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FEBRUARY 14 LECTURE

1 Dandelin’s spheres In this exercise we will determine the foci of an ellipse

by a method known as Dandelin’s spheres (discovered in 1822 by Germinal Piemre
Dandelin, a Belgian mathematician).

Recall from February 12 Lecture the following results:

1. If we drop a ball S into a cone C then the set of points on the cone
intersecting S is a circle at a fixed height from the vertex of C.

2. Let L and L' be two line segments emanating from a common point P
that are both tangent to a ball S. Denote the single point of

intersection of L (resp. L') with S by Q (resp. Q). Then, L and I/
have the same length.

An ellipse is a conic section: ellipses are obtained by intersecting a suitable
plane with a cone. An ellipse is also a planar curve surrounding two fixed points
(called foci) such that the sum of the distances to the two focal points is constant
for every point on the ellipse.
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Question: howare thse two desonptions related?
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2 Displacement vectors In this paragraph we are going to show the (perhaps
obvious?) result 2. indicated above - Let L and L' be two line segments emanating
from a common point P that are both tangent to a ball S. Denote the single point
of intersection of L (resp. L') with S by Q (resp. Q'). Then, L and L' have the same
length.
Diagram:

We want to show that |[PQ| = IPQ' |. It’s sufficient to show that |PQJ? = |PQ'|%.

1. Explain why we can assume that P is the origin in space.
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2. Denote the center of the sphere by C. Explain why
[OCP = 0GP +1QC* and [OCI =[0G + |QCP
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3. Use the previous result, and some algebra, deduce that |5@)|2 = |OQ']?
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3 A mysterious paralleologram Let 4,B,C, D be points in space such
that they don’t all lie on a common line. Let @ = ABCD be the quadrilateral.
Denote the mid points of the edges of ® by My, My, Mz, Mj.

Claim: The quadrilateral My MyM3 My is a. paralleogram.

1. What do you need to show in order to prove the Claim?
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