Practice Examination III

Instructions:

- You must attempt Problem 1.
- Please attempt at least five of Problems $2,3,4,5,6,7,8$.
- If you attempt all eight problems then your final score will be the sum of your score for Problem 1 and the scores for the five remaining problems receiving the highest number points.
- Calculators are not permitted.

1. (20 points) True/False:
(a) Let $\underline{F}(x, y)=\left[\begin{array}{l}u(x, y) \\ v(x, y)\end{array}\right]$. If \underline{F} is conservative then $u_{y}=v_{x}$.
(b) Every function $f(x, y)$ defined on \mathbb{R}^{2} has a local maximum or local minimum.
(c) If $f(x, y)$ is a continuous function then $\int_{0}^{1} \int_{x}^{1} f(x, y) d y d x=\int_{0}^{1} \int_{y}^{1} f(x, y) d x d y$
(d) If C is a closed oriented curve and \underline{F} is a vector field satisfying $\int_{C} \underline{F} \cdot d \underline{r}=0$ then \underline{F} is conservative.
(e) If $\underline{u}, \underline{v}$ are vectors then $|\underline{u} \times \underline{v}|$ is the area of the parallelogram spanned by $\underline{u}, \underline{v}$.
(f) $3 \nabla f=\frac{d}{d t} f(x+t, y+t, z+t)$
(g) The vector line integral of \underline{F} along the ellipse $x^{2}+5 y^{2}=1$ is zero.
(h) If $\underline{u}, \underline{v}, \underline{w} \in \mathbb{R}^{3}$ lie in a common plane then $\underline{u} \cdot(\underline{v}+\underline{u}) \times \underline{w}=0$.
(i) Consider the surface $S: z^{2}=f(x, y)$. If $P=(x, y, \sqrt{f(x, y)})$ is a point on S with maximal distance from $(0,0,0)$ then P is a local maximum of $g(x, y)=x^{2}+y^{2}+f(x, y)$.
(j) Using linear approximation, the value $\sqrt{101 \cdot 10002}$ is estimated as $1000+5+\frac{1}{10}$.
2. Let $P=(2,1,1), Q=(1,0,-1), R=(0,-1,2)$.
(a) Compute $\overrightarrow{P Q} \times \overrightarrow{P R}$.
(b) Write down the equation of the plane $\Pi: a x+b y+c z=d$ containing the points P, Q, R.
(c) Find the distance from the origin to Π.
3. Let $\underline{F}(x, y)=\left[\begin{array}{c}x^{2}-2 x y e^{-x^{2}}+2 y \\ e^{-x^{2}}+2 x+\cos (y)\end{array}\right]$.
(a) Show that \underline{F} is conservative by finding a potential function $f(x, y)$ such that $\nabla f=\underline{F}$.
(b) If C is the oriented curve going from $(1,0)$ to $(-1,0)$ along the semicircle $x^{2}+y^{2}=1, y \geq 0$, evaluate $\int_{C} \underline{F} \cdot d \underline{r}$
4. Consider the spheres

$$
S_{1}: x^{2}+y^{2}+z^{2}=6, \quad S_{2}:(x-3)^{2}+y^{2}+(z+1)^{2}=16
$$

(a) Determine the tangent plane to S_{1} at the point $(1,1,2)$ and the tangent plane to S_{2} at the point $(-1,0,-1)$
(b) Find a parameterisation of the line of intersection L of the tangent planes.
(c) Determine the distance from the centre of S_{2} to L.
5. (a) Classify the critical points of the function

$$
f(x, y)=x^{3}-y^{2}-x y+1
$$

(b) Determine the absolute maximum of $f(x, y)$ on the triangle having vertices $(0,0),(-1,0),(0,1)$ Hint: consider the extrema of $f(x, y)$ on the interior of the triangle and on the boundary of the triangle.)
6. (a) Let $f(x, y)=x+y$ and D be the region bounded between the x-axis and and the parabola $y=1-x^{2}, 1 \leq x \leq 5$. Compute

$$
\iint_{D} f d A
$$

(b) Evaluate the integral by changing the order of integration

$$
\int_{0}^{3} \int_{x^{2}}^{9} x e^{-y^{2}} d y d x
$$

7. (a) Given below is the level curve diagram of a function $f(x, y)$. Mark the points on the circle C where the extrema to the constrained optimisation problem

$$
\begin{aligned}
& \operatorname{max.} f(x, y) \\
& \text { subject to } C
\end{aligned}
$$

can occur.

(b) Let $\underline{v}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$. Find the point $P=\left(x_{0}, y_{0}\right)$ on the ellipse $E: x^{2}+4 y^{2}=1$ such that $\overrightarrow{O P} \cdot \underline{v}$ is maximised.
8. (a) Draw the region D^{\prime}, described in polar coordinates by $\pi / 4 \leq \theta \leq 3 \pi / 4,0 \leq r \leq 2$.
(b) Let $f(x, y)=y-x$. Using the linear change of coordinate formula, compute

$$
\iint_{D^{\prime}} f d A
$$

(Hint: if $\theta \in[0,2 \pi]$ then $M_{\theta}=\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$ is the matrix corresponding to the 'rotate by θ counterclockwise' linear transformation.)

