

PRACTICE EXAMINATION III

Instructions:

- You *must* attempt Problem 1.
- Please attempt at least five of Problems 2, 3, 4, 5, 6, 7, 8.
- If you attempt all eight problems then your final score will be the sum of your score for Problem 1 and the scores for the five remaining problems receiving the highest number points.
- Calculators are not permitted.
- 1. (20 points) True/False:
 - (a) Let $\underline{F}(x,y) = \begin{bmatrix} u(x,y) \\ v(x,y) \end{bmatrix}$. If \underline{F} is conservative then $u_y = v_x$.
 - (b) Every function f(x, y) defined on \mathbb{R}^2 has a local maximum or local minimum.
 - (c) If f(x,y) is a continuous function then $\int_0^1 \int_x^1 f(x,y) dy dx = \int_0^1 \int_y^1 f(x,y) dx dy$
 - (d) If C is a closed oriented curve and \underline{F} is a vector field satisfying $\int_C \underline{F} \cdot d\underline{r} = 0$ then \underline{F} is conservative.
 - (e) If $\underline{u}, \underline{v}$ are vectors then $|\underline{u} \times \underline{v}|$ is the area of the parallelogram spanned by $\underline{u}, \underline{v}$.
 - (f) $3\nabla f = \frac{d}{dt}f(x+t,y+t,z+t)$
 - (g) The vector line integral of \underline{F} along the ellipse $x^2 + 5y^2 = 1$ is zero.
 - (h) If $\underline{u}, \underline{v}, \underline{w} \in \mathbb{R}^3$ lie in a common plane then $\underline{u} \cdot (\underline{v} + \underline{u}) \times \underline{w} = 0$.
 - (i) Consider the surface $S: z^2 = f(x,y)$. If $P = (x, y, \sqrt{f(x,y)})$ is a point on S with maximal distance from (0,0,0) then P is a local maximum of $g(x,y) = x^2 + y^2 + f(x,y)$.
 - (j) Using linear approximation, the value $\sqrt{101 \cdot 10002}$ is estimated as $1000 + 5 + \frac{1}{10}$.
- 2. Let P = (2, 1, 1), Q = (1, 0, -1), R = (0, -1, 2).
 - (a) Compute $\overrightarrow{PQ} \times \overrightarrow{PR}$.
 - (b) Write down the equation of the plane Π : ax + by + cz = d containing the points P, Q, R.
 - (c) Find the distance from the origin to Π .

3. Let
$$\underline{F}(x,y) = \begin{bmatrix} x^2 - 2xye^{-x^2} + 2y \\ e^{-x^2} + 2x + \cos(y) \end{bmatrix}$$
.

- (a) Show that \underline{F} is conservative by finding a potential function f(x, y) such that $\nabla f = \underline{F}$.
- (b) If C is the oriented curve going from (1,0) to (-1,0) along the semicircle $x^2 + y^2 = 1$, $y \ge 0$, evaluate $\int_C \underline{F} \cdot d\underline{r}$
- 4. Consider the spheres

$$S_1: x^2 + y^2 + z^2 = 6,$$
 $S_2: (x-3)^2 + y^2 + (z+1)^2 = 16.$

- (a) Determine the tangent plane to S_1 at the point (1, 1, 2) and the tangent plane to S_2 at the point (-1, 0, -1)
- (b) Find a parameterisation of the line of intersection L of the tangent planes.
- (c) Determine the distance from the centre of S_2 to L.
- 5. (a) Classify the critical points of the function

$$f(x,y) = x^3 - y^2 - xy + 1$$

- (b) Determine the absolute maximum of f(x, y) on the triangle having vertices (0, 0), (-1, 0), (0, 1)Hint: consider the extrema of f(x, y) on the interior of the triangle and on the boundary of the triangle.)
- 6. (a) Let f(x,y) = x + y and D be the region bounded between the x-axis and and the parabola $y = 1 x^2, 1 \le x \le 5$. Compute

$$\int \int_D f dA$$

(b) Evaluate the integral by changing the order of integration

$$\int_0^3 \int_{x^2}^9 x e^{-y^2} dy dx$$

7. (a) Given below is the level curve diagram of a function f(x, y). Mark the points on the circle C where the extrema to the constrained optimisation problem

$$\begin{array}{l} \max. \ f(x,y) \\ \text{subject to } C \end{array}$$

can occur.

(b) Let $\underline{v} = \begin{bmatrix} 1\\1 \end{bmatrix}$. Find the point $P = (x_0, y_0)$ on the ellipse $E : x^2 + 4y^2 = 1$ such that $\overrightarrow{OP} \cdot \underline{v}$ is maximised.

- 8. (a) Draw the region D', described in polar coordinates by $\pi/4 \le \theta \le 3\pi/4$, $0 \le r \le 2$.
 - (b) Let f(x,y) = y x. Using the linear change of coordinate formula, compute

$$\int \int_{D'} f dA$$

(*Hint:* if $\theta \in [0, 2\pi]$ then $M_{\theta} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$ is the matrix corresponding to the 'rotate by θ counterclockwise' linear transformation.)