

Math 223AB: Spring 2018 EXAMINATION II

READ THE FOLLOWING INSTRUCTIONS CAREFULLY

DO NOT OPEN THIS PACKET UNTIL INSTRUCTED

Instructions:

- Sign the Honor Code Pledge below.
- Write your name on this exam and any extra sheets you hand in.
- You will have 120 minutes to complete this Examination.
- You must attempt Problem 1.
- You must attempt at least three of Problems 2, 3, 4, 5.
- Your final score will be the sum of your score for Problem 1 and the highest possible score obtained from three of the four remaining problems.
- There are 4 blank pages attached for scratchwork and/or additional space for solutions.
- Calculators are not permitted.
- Explain your answers clearly and neatly and in complete English sentences.
- State all Theorems you have used from class. To receive full credit you will need to justify each of your calculations and deductions coherently and fully.
- Correct answers without appropriate justification will be treated with great skepticism.

QUESTION 1:	[O /10
QUESTION 2:	Zo /20
QUESTION 3:	20 /20
QUESTION 4:	20 /20
QUESTION 5:	20/20
TOTAL:	70 /70
C.F GAILS	

"I have neither given nor received unauthorized aid on this assignment"

$$\lim_{(x,y)\to(0,0)} \frac{x^2y^2}{3x^2+y^2} = 0$$

- (b) If $\frac{\partial f}{\partial x} = \frac{\partial f}{\partial y} = 1$ then the graph of f(x, y) is a line.
- (c) For a differentiable function $f: \mathbb{R}^2 \to \mathbb{R}$ and any unit vector $\underline{u} \in \mathbb{R}^2$, $D_{\underline{u}}f(a,b) = -D_{-\underline{u}}f(a,b)$.
- (d) The vector field $\underline{F} = \begin{bmatrix} x^2 + \frac{y}{x} \\ \frac{x}{y} + y^2 \end{bmatrix}$ admits a potential function.
- (e) If f(x, g(x)) = 0 then $g'(x) = -f_x/f_y$ provided $f_y \neq 0$.

Solution: Write T(rue) or F(alse) in the corresponding box below

$$\frac{x^2y^2}{3x^2+y^2} = \frac{r^2\cos^2\theta\sin^2\theta}{3\cos^2\theta+\sin^2\theta} \rightarrow 0 \cos^2\theta\sin^2\theta$$

e) Let
$$w = f(x, g'(x))$$
.

$$0 = \frac{\partial w}{\partial x} = \frac{\partial f}{\partial x} \cdot 1 + \frac{\partial f}{\partial y} \cdot \frac{\partial g}{\partial x}$$

$$= f_x + f_y g'(x)$$

2. Let f(u, v) a differentiable function, and

$$g:\{(x,y)\mid y\neq 0\}\rightarrow \mathbb{R}^2\;,\;g(x,y)=\begin{bmatrix} x/y\\xy\end{bmatrix}$$

- (a) (5 points) Determine Dg(x, y).
- (b) (5 points) Let $h = f \circ g$. Determine $\frac{\partial h}{\partial x}(1,1)$ and $\frac{\partial h}{\partial y}(1,1)$ as a function of $f_u(1,1)$ and $f_v(1,1)$.
- (c) (10 points) Let q(x, y, z) be a differentiable scalar-valued function and define p(u, v, w) = q(u v, v u, w u). Show that

a) Dg
$$(\pi, y) = \begin{bmatrix} 1/y & -\frac{1}{2}y \\ y & x \end{bmatrix}$$

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial x} \cdot \frac{\partial x}{\partial x} + \frac{\partial f}{\partial y} \cdot \frac{\partial y}{\partial x} + \frac{\partial f}{\partial z} \cdot \frac{\partial f}{\partial x}$$

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial x} \cdot \frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} \cdot \frac{\partial f}{\partial x} + \frac{\partial f}{\partial z} \cdot \frac{\partial f}{\partial x}$$

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial x} \cdot \frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} \cdot \frac{\partial f}{\partial x} + \frac{\partial f}{\partial z} \cdot \frac{\partial f}{\partial x}$$

$$= -fx + fy$$

$$\frac{\partial f}{\partial x} \cdot \frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} \cdot \frac{\partial f}{\partial x} + \frac{\partial f}{\partial z} \cdot \frac{\partial f}{\partial x}$$

$$= -fy + fz$$

$$= -fy + fz$$

3. Consider the surface

$$S: \quad x^4 - y^4 + z^4 = 16$$

- (a) (10 points) Determine the tangent plane to S at (1,1,2).
- (b) (10 points) Consider the C curve obtained as the intersection of S with the plane x+y+z=4. Determine the tangent line to C at (1,1,2).

a) Let
$$h(1,1,1) = x^4 - y^4 + z^4$$

Then, normal for rangent plane is parallel to $\nabla h(1,1,2) = \begin{bmatrix} 4\\ -4\\ 32 \end{bmatrix}$ is $\begin{bmatrix} 1\\ 8 \end{bmatrix}$

=) tangent plane is
$$(x-1) + (y*1) + 8(z-2) = 0$$
=) xxy' x-y+8==16

$$= \frac{1}{2} + t \begin{bmatrix} \frac{7}{2} \\ \frac{7}{2} \end{bmatrix}, t \in \mathbb{R}$$

$$\underline{F} = \begin{bmatrix} e^x y \\ e^x + 2y \end{bmatrix}$$

- (a) (10 points) Determine the potential function f(x, y) for \underline{F} satisfying f(0, 0) = 1.
- (b) (10 points) Determine the tangent line to the level curve f(x,y) = 1 at (0,0).

e)
$$e^{x}y = \frac{\partial f}{\partial x} = \int f(x,y) = \int e^{x}y \,dx$$
 $= e^{x}y + g(y)$
 $e^{x} + 2y = \frac{\partial f}{\partial y} = e^{x} + g'(y)$
 $= \int g'(y) = 2y = \int g'(y) = \int 2y \,dy$
 $= y^{2} + C$

Require $f(x,y) = e^{x}y + y^{2} + C$

Require $f(x,y) = e^{x}y + y^{2} + C$
 $f(x,y) = e^{x}y + y^{2} + C$

Tongent line is perpendicular to [i] and parses through $f(x,y) = f(x,y) =$

5. The level curve diagram of a function f(x,y) is given below. Plotted are the points A=(0,0) and $B=(1/2,\sqrt{3}/2)$. It is known that $|\nabla f(A)|=|\nabla f(B)|$.

- (a) (5 points) On the level curve diagram mark the portion(s) of the level curve f=20 where $f_x\geq 0$ and $f_y\leq 0$.
- (b) (5 points) Give an example of a unit vector $\underline{u} \in \mathbb{R}^2$ such that $D_{\underline{u}}f(A) \geq 0$ and $D_{\underline{u}}f(B) < 0$. Solution:

$$u = \begin{bmatrix} -1 \end{bmatrix}$$

(c) (10 points) The unit circle centred at A is plotted. Suppose that $\underline{x}(t) = \begin{bmatrix} \cos(t) \\ \sin(t) \end{bmatrix}$, $t \in [0, 2\pi]$, is a parameterisation of the circle so that $B = \underline{x}(\pi/3)$. Let $\underline{v} = \underline{x}'(\pi/3)$. Based on the information given in the level curve diagram, mark the correct relationship between $D_{\underline{v}}f(A)$ and $D_{\underline{v}}f(B)$:

$D_{\underline{v}}f(A) < D_{\underline{v}}f(B)$	$D_{\underline{v}}f(A) = D_{\underline{v}}f(B)$	$D_{\underline{v}}f(A) > D_{\underline{v}}f(B)$
X		· .

Sime angre between Y and $\nabla f(A)$ is larger Than angle between Y and $\nabla f(B)$.