Practice Examination II Solution

Instructions:

- You must attempt Problem 1.
- Please attempt at least three of Problems 2,3,4,5.
- If you attempt all five problems then your final score will be the sum of your score for Problem 1 and the scores for the three remaining problems receiving the highest number points.
- Calculators are not permitted.

1. (10 points) True/False:
(a)

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y}{x^{2}+y^{3}}=1
$$

(b) If the partial derivatives of $f(\underline{x})$ exist at \underline{a} then f is differentiable at \underline{a}.
(c) If $\frac{\partial f}{\partial x}(P)=0$ then $f(\underline{x}) \leq f(P)$ for all \underline{x} in a small disc centred at P.
(d) Let $f(x, y)$ be function such that $f(t x, t y)=t^{3} f(x, y)$, for all t. Then,

$$
x \frac{\partial f}{\partial x}+y \frac{\partial f}{\partial y}=3 f(x, y)
$$

(e) The vector field $\underline{F}=\left[\begin{array}{l}x^{2} \sin (x y) \\ y^{2} \cos (x y)\end{array}\right]$ is conservative.

Solution:

(a) F
(b) F
(c) F
(d) T
(e) F
2. Consider the conservative vector field on \mathbb{R}^{2}

$$
\underline{F}=\left[\begin{array}{l}
3 x^{2} y+y^{3}+1 \\
x^{3}+3 x y^{2}+2
\end{array}\right]
$$

(a) Determine the potential function $f(x, y)$ for \underline{F} satisfying $f(-1,0)=0$.
(b) Determine the tangent line to the level curve $f(x, y)=0$ at $(-1,0)$.
(c) Show that the tangent line to the level curve $f(x, y)=3$ at $(0,1)$ is parallel to the tangent line computed in (b).

Solution:

(a)

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=3 x^{2} y+y^{3}+1 \quad \Longrightarrow \quad f(x, y)=\int 3 x^{2} y+y^{3}+1 d x=x^{3} y+x y^{3}+x+g(y) \\
& x^{3}+3 x y^{2}+2=\frac{\partial f}{\partial y}=x^{3}+3 x y^{2}+g^{\prime}(y) \quad \Longrightarrow \quad g^{\prime}(y)=2 \Longrightarrow g(y)=2 y+C
\end{aligned}
$$

Hence, potential function is of the form

$$
f(x, y)=x^{3} y+x y^{3}+x+2 y+C
$$

The condition

$$
0=f(-1,0)=-1+C \quad \Longrightarrow \quad C=1
$$

Hence,

$$
f(x, y)=x^{3} y+x y^{3}+x+2 y+1
$$

(b) We have

$$
\nabla f=\underline{F}=\left[\begin{array}{l}
3 x^{2} y+y^{3}+1 \\
x^{3}+3 x y^{2}+2
\end{array}\right] \quad \Longrightarrow \quad \nabla f(-1,0)=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

Then tangent is perpendicular to $\nabla f(-1,0)$ so it has slope -1 . Hence,

$$
y=(-1)(x+1)=-x-1
$$

is the equation of the tangent line.
(c) Since

$$
\nabla f(0,1)=\underline{F}(0,1)=\left[\begin{array}{l}
2 \\
2
\end{array}\right]
$$

and $\nabla f(0,1)$ is parallel to $\nabla f(-1,0)$, we must have the tangent line to $f=3$ is parallel to the tangent line in (b).
3. Consider the function

$$
f: \mathbb{R}^{2} \rightarrow \mathbb{R},(x, y) \mapsto x^{2} y^{2}-x-y
$$

(a) Determine $\nabla f(3,2)$
(b) Determine the equation of the tangent plane to the graph of $f(x, y)$ at $(3,2,31)$.
(c) Use a linear approximation to find the approximate value of $f(2.9,2.1)$.
(d) Compute the directional derivative of f at $(3,2)$ in the direction $\underline{v}=\left[\begin{array}{l}3 \\ 2\end{array}\right]$.

Solution:

(a) We have

$$
\nabla f=\left[\begin{array}{ll}
2 x y^{2}-1 & 2 x^{2} y-1
\end{array}\right]
$$

Hence, $\nabla f(3,2)=\left[\begin{array}{ll}23 & 35\end{array}\right]$.
(b) Use linearisation
$L(x, y)=f(3,2)+f_{x}(3,2)(x-3)+f_{y}(3,2)(y-2) \quad \Longrightarrow \quad L(x, y)=31+23(x-3)+35(y-2)$
Then, tangent plane to the graph $f(x, y)$ at $(3,2,31)$ is the graph of $L(x, y)$:

$$
z=31+23(x-3)+35(y-2)
$$

(c) Using linearisation we have

$$
L(2.9,2.1)=31+23 .(-0.1)+35 .(0.1)=32.2
$$

(d) Let $\underline{v}=\left[\begin{array}{l}3 \\ 2\end{array}\right]$. Then,

$$
D_{\underline{v}} f(3,2)=\nabla f(3,2) \underline{v}=\left[\begin{array}{ll}
23 & 35
\end{array}\right]\left[\begin{array}{l}
3 \\
2
\end{array}\right]=139
$$

4. Consider the differentiable functions

$$
\begin{gathered}
f:\{(x, y) \mid x>0\} \rightarrow \mathbb{R}^{2},\left[\begin{array}{l}
x \\
y
\end{array}\right] \mapsto\left[\begin{array}{c}
y / x \\
x^{2}+y^{2}
\end{array}\right] \\
g: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2},\left[\begin{array}{l}
x \\
y
\end{array}\right] \mapsto\left[\begin{array}{c}
2 x y \\
x^{2}-y^{2}
\end{array}\right] \\
h: \mathbb{R}^{2} \rightarrow \mathbb{R},(x, y) \mapsto x^{3}+3 x y+y^{3}
\end{gathered}
$$

(a) Compute the Jacobian matrices $D f, D g, D h$.
(b) Let $p(x, y)=g\left(y / x, x^{2}+y^{2}\right)$. Determine $D p$.
(c) Let $q(x, y)=h\left(2 x y, x^{2}-y^{2}\right)$. Determine ∇q and compute $\frac{\partial q}{\partial y}(1,1)$.

Solution:

(a)

$$
D f=\left[\begin{array}{cc}
-y / x^{2} & 1 / x \\
2 x & 2 y
\end{array}\right], \quad D g=\left[\begin{array}{cc}
2 y & 2 x \\
2 x & -2 y
\end{array}\right], \quad D h=\left[\begin{array}{ll}
3 x^{2}+3 y & 3 x+3 y^{2}
\end{array}\right]
$$

(b) We can write $p(x, y)=(g \circ f)(x, y)$. Hence,

$$
\begin{gathered}
D p(x, y)=D(g \circ f)(x, y)=(D g)(f(x, y)) D f(x, y) \\
=\left[\begin{array}{cc}
2\left(x^{2}+y^{2}\right) & 2 y / x \\
2 y / x & -2\left(x^{2}+y^{2}\right)
\end{array}\right]\left[\begin{array}{cc}
-y / x^{2} & 1 / x \\
2 x & 2 y
\end{array}\right]=\left[\begin{array}{cc}
-2 y-2 y^{3} / x^{2} & 2 x+6 y^{2} x \\
-2 y^{2} x^{3}-4 x\left(x^{2}+y^{2}\right) & 2 y / x^{2}-4 y\left(x^{2}+y^{2}\right)
\end{array}\right]
\end{gathered}
$$

(c) We can write $q(x, y)=(h \circ g)(x, y)$. Hence,

$$
\begin{aligned}
& \nabla q=D q=D(h \circ g)=(D h)(g(x, y)) D g(x, y) \\
& =\left[\begin{array}{ll}
12 x^{2} y^{2}+3\left(x^{2}-y^{2}\right) & 6 x y+3\left(x^{2}-y^{2}\right)^{2}
\end{array}\right]\left[\begin{array}{cc}
2 y & 2 x \\
2 x & -2 y
\end{array}\right] \\
& =\left[\begin{array}{lll}
24 x^{2} y^{3}+12 x^{2} y-6 y^{3}+6 x\left(x^{2}-y^{2}\right)^{2} & 24 x^{3} y^{2}+6 x^{3}-18 x y^{2}-6 y\left(x^{2}-y^{2}\right)^{2}
\end{array}\right]
\end{aligned}
$$

Hence, since $\nabla q(1,1)=\left[\begin{array}{ll}30 & 12\end{array}\right]$,

$$
\frac{\partial q}{\partial y}(1,1)=12
$$

5. A function $f(x, y)$ has the following level curve diagram

(a) On the level curve diagram mark the portion(s) of the level curve $f=2$ where $\frac{\partial f}{\partial y} \geq 0$.
(b) Based on the information given in the level curve diagram, mark the correct relationship between $|\nabla f(A)|$ and $|\nabla f(B)|$:

$\|\nabla f(A)\|<\|\nabla f(B)\|$	$\|\nabla f(A)\|=\|\nabla f(B)\|$	$\|\nabla f(A)\|>\|\nabla f(B)\|$
X		

(c) Let $\underline{v}=\left[\begin{array}{l}-1 \\ -1\end{array}\right]$. On the level curve diagram mark a point C satisfying the following conditions:

$$
\frac{\partial f}{\partial x}(C)<0, \quad \text { and } \quad D_{\underline{v}} f(C)>0
$$

