Practice Examination II

Instructions:

- You must attempt Problem 1.
- Please attempt at least three of Problems 2,3,4,5.
- If you attempt all five problems then your final score will be the sum of your score for Problem 1 and the scores for the three remaining problems receiving the highest number points.
- Calculators are not permitted.

1. (10 points) True/False:
(a)

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y}{x^{2}+y^{3}}=1
$$

(b) If the partial derivatives of $f(\underline{x})$ exist at \underline{a} then f is differentiable at \underline{a}.
(c) If $\frac{\partial f}{\partial x}(P)=0$ then $f(\underline{x}) \leq f(P)$ for all \underline{x} in a small disc centred at P.
(d) Let $f(x, y)$ be function such that $f(t x, t y)=t^{3} f(x, y)$, for all t. Then,

$$
x \frac{\partial f}{\partial x}+y \frac{\partial f}{\partial y}=3 f(x, y)
$$

(e) The vector field $\underline{F}=\left[\begin{array}{l}x^{2} \sin (x y) \\ y^{2} \cos (x y)\end{array}\right]$ is conservative.
2. Consider the conservative vector field on \mathbb{R}^{2}

$$
\underline{F}=\left[\begin{array}{l}
3 x^{2} y+y^{3}+1 \\
x^{3}+3 x y^{2}+2
\end{array}\right]
$$

(a) Determine the potential function $f(x, y)$ for \underline{F} satisfying $f(-1,0)=0$.
(b) Determine the tangent line to the level curve $f(x, y)=0$ at $(-1,0)$.
(c) Show that the tangent line to the level curve $f(x, y)=3$ at $(0,1)$ is parallel to the tangent line computed in (b).
3. Consider the function

$$
f: \mathbb{R}^{2} \rightarrow \mathbb{R},(x, y) \mapsto x^{2} y^{2}-x-y
$$

(a) Determine $\nabla f(3,2)$
(b) Determine the equation of the tangent plane to the graph of $f(x, y)$ at $(3,2,31)$.
(c) Use a linear approximation to find the approximate value of $f(2.9,2.1)$.
(d) Compute the directional derivative of f at $(3,2)$ in the direction $\underline{v}=\left[\begin{array}{l}3 \\ 2\end{array}\right]$.
4. Consider the differentiable functions

$$
\begin{gathered}
f:\{(x, y) \mid x>0\} \rightarrow \mathbb{R}^{2},\left[\begin{array}{l}
x \\
y
\end{array}\right] \mapsto\left[\begin{array}{c}
y / x \\
x^{2}+y^{2}
\end{array}\right] \\
g: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2},\left[\begin{array}{l}
x \\
y
\end{array}\right] \mapsto\left[\begin{array}{c}
2 x y \\
x^{2}-y^{2}
\end{array}\right] \\
h: \mathbb{R}^{2} \rightarrow \mathbb{R},(x, y) \mapsto x^{3}+3 x y+y^{3}
\end{gathered}
$$

(a) Compute the Jacobian matrices $D f, D g, D h$.
(b) Let $p(x, y)=g\left(y / x, x^{2}+y^{2}\right)$. Determine $D p$.
(c) Let $q(x, y)=h\left(2 x y, x^{2}-y^{2}\right)$. Determine ∇q and compute $\frac{\partial q}{\partial y}(1,1)$.
5. A function $f(x, y)$ has the following level curve diagram

(a) On the level curve diagram mark the portion(s) of the level curve $f=2$ where $\frac{\partial f}{\partial y} \geq 0$.
(b) Based on the information given in the level curve diagram, mark the correct relationship between $|\nabla f(A)|$ and $|\nabla f(B)|:$

$\|\nabla f(A)\|<\|\nabla f(B)\|$	$\|\nabla f(A)\|=\|\nabla f(B)\|$	$\|\nabla f(A)\|>\|\nabla f(B)\|$

(c) Let $\underline{v}=\left[\begin{array}{l}-1 \\ -1\end{array}\right]$. On the level curve diagram mark a point C satisfying the following conditions:

$$
\frac{\partial f}{\partial x}(C)<0, \quad \text { and } \quad D_{\underline{v}} f(C)>0
$$

