

## PRACTICE EXAMINATION II

## Instructions:

- You *must* attempt Problem 1.
- Please attempt at least three of Problems 2,3,4,5.
- If you attempt all five problems then your final score will be the sum of your score for Problem 1 and the scores for the three remaining problems receiving the highest number points.
- Calculators are not permitted.
- 1. (10 points) True/False:

(a)

$$\lim_{(x,y)\to(0,0)}\frac{x^2y}{x^2+y^3}=1$$

- (b) If the partial derivatives of  $f(\underline{x})$  exist at  $\underline{a}$  then f is differentiable at  $\underline{a}$ .
- (c) If  $\frac{\partial f}{\partial x}(P) = 0$  then  $f(\underline{x}) \leq f(P)$  for all  $\underline{x}$  in a small disc centred at P.
- (d) Let f(x,y) be function such that  $f(tx,ty) = t^3 f(x,y)$ , for all t. Then,

$$x\frac{\partial f}{\partial x} + y\frac{\partial f}{\partial y} = 3f(x,y)$$

(e) The vector field 
$$\underline{F} = \begin{bmatrix} x^2 \sin(xy) \\ y^2 \cos(xy) \end{bmatrix}$$
 is conservative.

2. Consider the conservative vector field on  $\mathbb{R}^2$ 

$$\underline{F} = \begin{bmatrix} 3x^2y + y^3 + 1\\ x^3 + 3xy^2 + 2 \end{bmatrix}$$

- (a) Determine the potential function f(x, y) for <u>F</u> satisfying f(-1, 0) = 0.
- (b) Determine the tangent line to the level curve f(x, y) = 0 at (-1, 0).
- (c) Show that the tangent line to the level curve f(x, y) = 3 at (0, 1) is parallel to the tangent line computed in (b).
- 3. Consider the function

$$f: \mathbb{R}^2 \to \mathbb{R}, (x, y) \mapsto x^2 y^2 - x - y$$

- (a) Determine  $\nabla f(3,2)$
- (b) Determine the equation of the tangent plane to the graph of f(x, y) at (3, 2, 31).
- (c) Use a linear approximation to find the approximate value of f(2.9, 2.1).

- (d) Compute the directional derivative of f at (3,2) in the direction  $\underline{v} = \begin{bmatrix} 3\\2 \end{bmatrix}$ .
- 4. Consider the differentiable functions

$$f: \{(x,y) \mid x > 0\} \to \mathbb{R}^2, \begin{bmatrix} x \\ y \end{bmatrix} \mapsto \begin{bmatrix} y/x \\ x^2 + y^2 \end{bmatrix}$$
$$g: \mathbb{R}^2 \to \mathbb{R}^2, \begin{bmatrix} x \\ y \end{bmatrix} \mapsto \begin{bmatrix} 2xy \\ x^2 - y^2 \end{bmatrix}$$
$$h: \mathbb{R}^2 \to \mathbb{R}, \ (x,y) \mapsto x^3 + 3xy + y^3$$

- (a) Compute the Jacobian matrices Df, Dg, Dh.
- (b) Let  $p(x, y) = g(y/x, x^2 + y^2)$ . Determine Dp. (c) Let  $q(x, y) = h(2xy, x^2 y^2)$ . Determine  $\nabla q$  and compute  $\frac{\partial q}{\partial y}(1, 1)$ .
- 5. A function f(x, y) has the following level curve diagram



(a) On the level curve diagram mark the portion(s) of the level curve f = 2 where  $\frac{\partial f}{\partial y} \ge 0$ .

(b) Based on the information given in the level curve diagram, mark the correct relationship between  $|\nabla f(A)|$  and  $|\nabla f(B)|$ :

| $ \nabla f(A) $ as                                            | nd $ \nabla f(B) $ :                                         |                                 |                                 |           |
|---------------------------------------------------------------|--------------------------------------------------------------|---------------------------------|---------------------------------|-----------|
|                                                               | $ \nabla f(A)  <  \nabla f(B) $                              | $ \nabla f(A)  =  \nabla f(B) $ | $ \nabla f(A)  >  \nabla f(B) $ |           |
|                                                               |                                                              |                                 |                                 |           |
| (c) Let $\underline{v} = \begin{bmatrix} -\\ - \end{bmatrix}$ | $\begin{bmatrix} 1\\1 \end{bmatrix}$ . On the level curve di | agram mark a point $C$ s        | atisfying the following cor     | iditions: |
| $\partial f$                                                  |                                                              |                                 |                                 |           |

$$\frac{\partial f}{\partial x}(C) < 0$$
, and  $D_{\underline{v}}f(C) > 0$