READ THE FOLLOWING INSTRUCTIONS CAREFULLY

DO NOT OPEN THIS PACKET UNTIL INSTRUCTED

Instructions:

- Sign the Honor Code Pledge below.
- Write your name on this exam and any extra sheets you hand in.
- You will have 120 minutes to complete this Examination.
- You must attempt Problem 1.
- You must attempt at least three of Problems 2, 3, 4, 5.
- Your final score will be the sum of your score for Problem 1 and the highest possible score obtained from three of the four remaining problems.
- There are 4 blank pages attached for scratchwork and/or additional space for solutions.
- Calculators are not permitted.
- Explain your answers clearly and neatly and in complete English sentences.
- State all Theorems you have used from class. To receive full credit you will need to justify each of your calculations and deductions coherently and fully.
- Correct answers without appropriate justification will be treated with great skepticism.

QUESTION 1:	l > /10
QUESTION 2:	とっ /20
Question 3:	とつ /20
Question 4:	2つ /20
Question 5:	とつ /20
TOTAL:	70/70
	<i>(</i>

NAME: HENRI POINCARE

"I have neither given nor received unauthorized aid on this assignment"

- 1. (10 points) True/False (no justification required)
 - (a) For any $\underline{a}, \underline{b} \in \mathbb{R}^3$,

$$|\underline{a} \times \underline{b}|^2 = |\underline{a}|^2 |\underline{b}|^2 - (\underline{a} \cdot \underline{b})^2$$

Recall that $|\underline{x}| = \sqrt{\underline{x} \cdot \underline{x}}$ is the magnitude of \underline{x} .

(b) The path

$$\underline{x}(t) = \begin{bmatrix} e^t \\ 2\ln(t) \\ t^{-1} \end{bmatrix}, \quad t > 0,$$

is a flow line for the vector field $\underline{F} = \begin{bmatrix} x \\ 2z \\ z^2 \end{bmatrix}$.

- (c) If $\underline{x}(t)$ is a path with acceleration $\underline{a}(t)$ then $\underline{x}(t) \times \underline{a}(t)$ is a constant.
- (d) Let $A,B,C,D\in\mathbb{R}^3$. Then, A,B,C,D all lie in a plane if $(\overrightarrow{AB}\times\overrightarrow{CD})\cdot\overrightarrow{AC}=0$
- (e) The line $\underline{r}(t) = \begin{bmatrix} 1+t\\2-t\\3+5t \end{bmatrix}$ lies in the plane defined by the equation 5x+y=2.

Solution: Write T(rue) or F(alse) in the corresponding box below

a)	_{b)}	c) F	d) 6 T	e) F

2. Let A = (1,0,2), B = (4,1,2), C = (3,3,3), D = (a,b,c)

A parallelogram is a planar quadrilateral such that opposite sides are parallel and have equal magnitude.

- (a) (3 points) Determine a, b, c so that ABCD is a parallelogram.
- (b) (7 points) Determine the equation of the plane containing ABCD.
- (c) (10 points) Compute the distance between the line segments AC and BD.

a)
$$\overrightarrow{AC} = \overrightarrow{BD}$$
 i.e $\begin{bmatrix} 2 \\ 3 \end{bmatrix} = \begin{bmatrix} a-4 \\ b-1 \\ c-2 \end{bmatrix} = 3$

b)
$$\overrightarrow{AB} \times \overrightarrow{AC} = \begin{bmatrix} 3 \\ 1 \\ 0 \end{bmatrix} \times \begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ -3 \\ 7 \end{bmatrix} = \overrightarrow{D}$$

$$\frac{2}{2} \left[\frac{x}{y} \right] = \frac{1}{2} \left[\frac{x}{2} \right] = \frac{15}{2}$$

=> distance = height
=
$$\sqrt{59}$$

- 3. Let P = (1,1,0), Q = (0,1,1).
 - (a) (5 points) Determine a parametric description of the line L through P and Q.
 - (b) (5 points) Given points $A, B \in \mathbb{R}^3$, define the **midpoint between** A and B to be the point M such that $\overrightarrow{MA} = -\overrightarrow{MB}$. Determine the midpoint between P and Q.
 - (c) (5 points) The set of points $R = (x, y, z) \in \mathbb{R}^3$ such that

$$\overrightarrow{PR} \cdot \overrightarrow{PM} = \overrightarrow{QR} \cdot \overrightarrow{QM}$$

defines a plane $\Pi : ax + by + cz = d$. Determine a, b, c, d.

(d) (5 points) Let $R \in \Pi$. Show that \overrightarrow{MR} is perpendicular to L.

a)
$$\Delta(t) = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} + t \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1-t \\ -t \\ -t \end{bmatrix}$$
 $t \in \mathbb{R}$.

b) $M = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$, $MP = \begin{bmatrix} 1-a \\ 1-b \\ -c \end{bmatrix}$ $MQ = \begin{bmatrix} -a \\ 1-b \\ 1-c \end{bmatrix}$
 $MP = -MQ \Rightarrow \begin{bmatrix} 1-a \\ 1-b \\ -c \end{bmatrix}$
 $MP = -MQ \Rightarrow \begin{bmatrix} 1-a \\ 1-b \\ -c \end{bmatrix}$
 $MP = \begin{bmatrix} a \\ 1-b \\ -c \end{bmatrix}$
 $MQ = \begin{bmatrix} a \\ 1-b \\ 1-c \end{bmatrix}$
 $MQ = \begin{bmatrix} a \\ 1-b \\ 1-c \end{bmatrix}$
 $MQ = \begin{bmatrix} a \\ 1-b \\ 1-c \end{bmatrix}$
 $MQ = \begin{bmatrix} a \\ 1-b \\ 1-c \end{bmatrix}$
 $MQ = \begin{bmatrix} a \\ 1-b \\ 1-c \end{bmatrix}$
 $MQ = \begin{bmatrix} a \\ 1-b \\ 1-c \end{bmatrix}$
 $MQ = \begin{bmatrix} a \\ 1-b \\ 1-c \end{bmatrix}$
 $MQ = \begin{bmatrix} a \\ 1-b \\ 1-c \end{bmatrix}$
 $MQ = \begin{bmatrix} a \\ 1-b \\ 1-c \end{bmatrix}$
 $MQ = \begin{bmatrix} a \\ 1-b \\ 1-c \end{bmatrix}$
 $MQ = \begin{bmatrix} a \\ 1-b \\ 1-c \end{bmatrix}$
 $MQ = \begin{bmatrix} a \\ 1-b \\ 1-c \end{bmatrix}$
 $MQ = \begin{bmatrix} a \\ 1-b \\ 1-c \end{bmatrix}$
 $MQ = \begin{bmatrix} a \\ 1-b \\ 1-c \end{bmatrix}$
 $MQ = \begin{bmatrix} a \\ 1-b \\ 1-c \end{bmatrix}$
 $MQ = \begin{bmatrix} a \\ 1-b \\ 1-c \end{bmatrix}$
 $MQ = \begin{bmatrix} a \\ 1-b \\ 1-c \end{bmatrix}$
 $MQ = \begin{bmatrix} a \\ 1-b \\ 1-c \end{bmatrix}$
 $MQ = \begin{bmatrix} a \\ 1-b \\ 1-c \end{bmatrix}$
 $MQ = \begin{bmatrix} a \\ 1-b \\ 1-c \end{bmatrix}$
 $MQ = \begin{bmatrix} a \\ 1-b \\ 1-c \end{bmatrix}$
 $MQ = \begin{bmatrix} a \\ 1-b \\ 1-c \end{bmatrix}$
 $MQ = \begin{bmatrix} a \\ 1-b \\ 1-c \end{bmatrix}$
 $MQ = \begin{bmatrix} a \\ 1-b \\ 1-c \end{bmatrix}$
 $MQ = \begin{bmatrix} a \\ 1-b \\ 1-c \end{bmatrix}$
 $MQ = \begin{bmatrix} a \\ 1-b \\ 1-c \end{bmatrix}$
 $MQ = \begin{bmatrix} a \\ 1-b \\ 1-c \end{bmatrix}$
 $MQ = \begin{bmatrix} a \\ 1-b \\ 1-c \end{bmatrix}$
 $MQ = \begin{bmatrix} a \\ 1-b \\ 1-c \end{bmatrix}$
 $MQ = \begin{bmatrix} a \\ 1-b \\ 1-c \end{bmatrix}$
 $MQ = \begin{bmatrix} a \\ 1-b \\ 1-c \end{bmatrix}$
 $MQ = \begin{bmatrix} a \\ 1-b \\ 1-c \end{bmatrix}$
 $MQ = \begin{bmatrix} a \\ 1-b \\ 1-c \end{bmatrix}$
 $MQ = \begin{bmatrix} a \\ 1-b \\ 1-c \end{bmatrix}$
 $MQ = \begin{bmatrix} a \\ 1-b \\ 1-c \end{bmatrix}$
 $MQ = \begin{bmatrix} a \\ 1-b \\ 1-c \end{bmatrix}$
 $MQ = \begin{bmatrix} a \\ 1-b \\ 1-c \end{bmatrix}$
 $MQ = \begin{bmatrix} a \\ 1-b \\ 1-c \end{bmatrix}$
 $MQ = \begin{bmatrix} a \\ 1-b \\ 1-c \end{bmatrix}$
 $MQ = \begin{bmatrix} a \\ 1-b \\ 1-c \end{bmatrix}$
 $MQ = \begin{bmatrix} a \\ 1-b \\ 1-c \end{bmatrix}$
 $MQ = \begin{bmatrix} a \\ 1-b \\ 1-c \end{bmatrix}$
 $MQ = \begin{bmatrix} a \\ 1-b \\ 1-c \end{bmatrix}$
 $MQ = \begin{bmatrix} a \\ 1-b \\ 1-c \end{bmatrix}$
 $MQ = \begin{bmatrix} a \\ 1-b \\ 1-c \end{bmatrix}$
 $MQ = \begin{bmatrix} a \\ 1-b \\ 1-c \end{bmatrix}$
 $MQ = \begin{bmatrix} a \\ 1-b \\ 1-c \end{bmatrix}$
 $MQ = \begin{bmatrix} a \\ 1-b \\ 1-c \end{bmatrix}$
 $MQ = \begin{bmatrix} a \\ 1-b \\ 1-c \end{bmatrix}$
 $MQ = \begin{bmatrix} a \\ 1-b \\ 1-c \end{bmatrix}$
 $MQ = \begin{bmatrix} a \\ 1-b \\ 1-c \end{bmatrix}$
 $MQ = \begin{bmatrix} a \\ 1-b \\ 1-c \end{bmatrix}$
 $MQ = \begin{bmatrix} a \\ 1-b \\ 1-c \end{bmatrix}$
 $MQ = \begin{bmatrix} a \\ 1-b \\ 1-c \end{bmatrix}$
 $MQ = \begin{bmatrix} a \\ 1-b \\ 1-c \end{bmatrix}$
 $MQ = \begin{bmatrix} a \\ 1-b \\ 1-c \end{bmatrix}$
 $MQ = \begin{bmatrix} a \\ 1-b \\ 1-c \end{bmatrix}$
 $MQ = \begin{bmatrix} a \\ 1-b \\ 1-c \end{bmatrix}$
 $MQ = \begin{bmatrix} a \\ 1-b \\ 1-c \end{bmatrix}$
 $MQ = \begin{bmatrix} a \\ 1-b \end{bmatrix}$
 $MQ =$

4. Consider the path

$$\underline{x}(t) = \begin{bmatrix} 1/t \\ t \end{bmatrix}, \quad t > 0.$$

Denote by C the image curve of \underline{x} .

- (a) (5 points) Determine the tangent line to C at $\underline{x}(3)$.
- (b) (5 points) Show that there does not exist t_0 for which the line tangent to C at $\underline{x}(t_0)$ is perpendicular to the line tangent to C at $\underline{x}(3)$.
- (c) (10 points) Let $0 < t_1 < t_2$. Let L be the line through $\underline{x}(t_1)$ and $\underline{x}(t_2)$. Determine c > 0 so that the tangent line to C at $\underline{x}(c)$ is parallel to L.

a)
$$x'(t) = \begin{bmatrix} -1/t^2 \\ 1 \end{bmatrix}$$
 $x'(t) = \begin{bmatrix} -1/t^2 \\ 1 \end{bmatrix}$ $x'(t) = \begin{bmatrix} -1/t^2 \\ 1 \end{bmatrix}$

b) Au tangent lines to C have negative slope, sine
$$z'(t) = \begin{bmatrix} -1/t^2 \\ 1 \end{bmatrix}$$
, we slope $= \frac{1}{-1/t^2}$

Since f(s) has negative repe, any line perpendicular to it must have positive slope no By what we stated whome, this is impossible

c) Let
$$0 < t_1 < t_2$$
. Want tangent into to be parallel to $\times (t_2) - \times (t_1) = \left[\frac{1}{t_2} - \frac{1}{t_1}\right] = \left[\frac{1}{t_2} - \frac{1}{t_1}\right]$

The require
$$c > 0$$
 so that

 $x'(c) = \begin{bmatrix} -1/c^2 \\ -1/c^2 \end{bmatrix}$ parallel to $x(t_1) - x(t_1)$

where $c = \int_{t_1 \in T_2}^{t_2} \frac{1}{t_2} dt$

the parallel to L .

5. (a) (10 points) Match the vector field with the corresponding plot.

Vector Field	$\underline{F} = \begin{bmatrix} x - y \\ y + x \end{bmatrix}$	$\underline{F} = \begin{bmatrix} -x + y \\ 2x - y \end{bmatrix}$	$\underline{F} = \begin{bmatrix} -x + y \\ -y + x \end{bmatrix}$	$\underline{F} = \begin{bmatrix} x \\ -y \end{bmatrix}$
Plot	B	C	D	A

(b) (10 points) Determine
$$A, B, C, D$$
 so that $\underline{x}(t) = \begin{bmatrix} -t+1 \\ 2At^2 + Bt + C \\ 5t + D \end{bmatrix}$ is the flow line for the vector $\begin{bmatrix} -1 \end{bmatrix}$

field
$$\underline{F} = \begin{bmatrix} -1 \\ 2x + z \\ 5 \end{bmatrix}$$
 satisfying $\underline{x}(0) = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$.

Also:
$$\frac{\chi'(t)}{5} = \begin{bmatrix} -1 \\ 4At + B \end{bmatrix}$$

$$\frac{1}{5} = \begin{bmatrix} -1 \\ 4At + B \end{bmatrix}$$

$$\frac{1}{5} = \begin{bmatrix} -1 \\ 3t + 3 \end{bmatrix}$$