Practice Examination I

Instructions:

- You must attempt Problem 1.
- Please attempt at least three of Problems 2,3,4,5.
- If you attempt all five problems then your final score will be the sum of your score for Problem 1 and the scores for the three remaining problems receiving the highest number points.
- Calculators are not permitted.

1. (10 points) True/False:
(a) The vector $(\underline{i} \times((-\underline{j} \cdot \underline{j}) \underline{j})) \times \underline{j}$ points in the direction of \underline{k}.
(b) The slope of the tangent line to the image curve of $\underline{x}(t)=\left[\begin{array}{c}t \cos (t) \\ t \sin (t)\end{array}\right], t \in \mathbb{R}$, at $\underline{x}(0)$ is undefined.
(c) Let Π be the plane with normal vector $\vec{n}=\left[\begin{array}{c}1 \\ 2 \\ -1\end{array}\right]$ containing the point $P=(0,1,-1)$. Then, the line through $Q=(3,2,-5)$ in the direction $\left[\begin{array}{l}1 \\ 1 \\ 3\end{array}\right]$ intersects Π.
(d) Consider the vector field $\underline{F}=\left[\begin{array}{l}x+y \\ y-x\end{array}\right]$ in the plane. The path $\underline{x}(t)=\left[\begin{array}{c}e^{t} \cos (t) \\ -\sin (t)\end{array}\right], \underline{x}(0)=\left[\begin{array}{l}1 \\ 0\end{array}\right]$, is a flow line for \underline{F}.
(e) The plane defined by the equation $2 x+y-z=2$ is parallel to the plane $\underline{r}(s, t)=\left[\begin{array}{c}1+s-t \\ 2 s \\ 3-s+2 t\end{array}\right]$.
2. The points $A=(0,-1,1 / \sqrt{2}), B=(1,0,-1 / \sqrt{2}), C=(-1,0,-1 / \sqrt{2}), D=(0,1,1 / \sqrt{2})$ are the vertices of a tetrahedron T.

A tetrahedron is characterised by the property that any three vertices define an equilateral triangle. In particular, all of its edges have the same length.
(a) Verify that the triangle $A B D$ is equilateral i.e. show that each of the interior angles is $\pi / 3$.
(b) Determine the area of $A B D$. Determine the surface area of the tetrahedron.
(c) Let $\vec{n}_{1}, \vec{n}_{2}, \vec{n}_{3}, \vec{n}_{4}$ be outward-pointing, unit length normal vectors to each of the faces of T. Show that

$$
\vec{n}_{1}+\vec{n}_{2}+\vec{n}_{3}+\vec{n}_{4}=\overrightarrow{0}
$$

3. (a) Determine the plane Π that's perpendicular to the line $\underline{r}(t)=\left[\begin{array}{c}-1+2 t \\ 3 t \\ 2-t\end{array}\right], t \in \mathbb{R}$, and containing the point $P=(1,1,1)$.
(b) Let $Q=(4,5,-3)$. Define $Q^{\prime}=(a, b, c)$ to be the point that is the mirror image of Q on the opposite side of the plane: this means $\overrightarrow{Q Q^{\prime}}$ is normal to Π and $\left|\overrightarrow{Q Q^{\prime}}\right|$ is twice the distance from Q to Π. Determine Q^{\prime}.
4. Consider the path

$$
\underline{x}(t)=\left[\begin{array}{l}
3 \cos (t) \\
2 \sin (t)
\end{array}\right], \quad t \in \mathbb{R}
$$

Denote by C the image curve of \underline{x}.
(a) Let L denote the tangent line to C at $\underline{x}(\pi / 4)$. Determine a parametric equation for L.
(b) L intersects the y-axis at a unique point $P=(0, a)$. Determine a.
(c) Let $Q=\underline{x}(3 \pi / 4) \in C$. Show that $\overrightarrow{P Q}=\underline{x}^{\prime}(3 \pi / 4)$, the velocity vector of \underline{x} at $t=3 \pi / 4$.
5. Define spheryndrical coordinates $(\varphi, \theta, z), 0 \leq \varphi \leq \pi, 0 \leq \theta \leq 2 \pi, z \in \mathbb{R}$, to be the coordinate system related to Cartesian coordinates via the transformation

$$
\begin{aligned}
& x=z \tan \varphi \cos \theta \\
& y=z \tan \varphi \sin \theta \\
& z=z
\end{aligned}
$$

(a) Write down the cylindrical coordinates in terms of spheryndrical coordinates

$$
\begin{aligned}
& r= \\
& \theta= \\
& z=
\end{aligned}
$$

Recall that $r \geq 0,0 \leq \theta \leq 2 \pi, z \in \mathbb{R}$.
(b) Write down a description in terms of spheryndrical coordinates of the double-napped cone $x^{2}+y^{2}=z^{2}$.
(c) Describe the surface given by the spheryndrical equation $z=\cos \varphi$.

