

PRACTICE EXAMINATION I

Instructions:

- You *must* attempt Problem 1.
- Please attempt at least three of Problems 2,3,4,5.
- If you attempt all five problems then your final score will be the sum of your score for Problem 1 and the scores for the three remaining problems receiving the highest number points.
- Calculators are not permitted.
- 1. (10 points) True/False:
 - (a) The vector $(\underline{i} \times ((-\underline{j} \cdot \underline{j})\underline{j})) \times \underline{j}$ points in the direction of \underline{k} .
 - (b) The slope of the tangent line to the image curve of $\underline{x}(t) = \begin{bmatrix} t \cos(t) \\ t \sin(t) \end{bmatrix}$, $t \in \mathbb{R}$, at $\underline{x}(0)$ is undefined.

(c) Let Π be the plane with normal vector $\vec{n} = \begin{bmatrix} 1\\ 2\\ -1 \end{bmatrix}$ containing the point P = (0, 1, -1). Then, the line through Q = (3, 2, -5) in the direction $\begin{bmatrix} 1\\ 1\\ 3 \end{bmatrix}$ intersects Π .

(d) Consider the vector field $\underline{F} = \begin{bmatrix} x+y\\ y-x \end{bmatrix}$ in the plane. The path $\underline{x}(t) = \begin{bmatrix} e^t \cos(t)\\ -\sin(t) \end{bmatrix}$, $\underline{x}(0) = \begin{bmatrix} 1\\ 0 \end{bmatrix}$, is a flow line for \underline{F} .

- (e) The plane defined by the equation 2x + y z = 2 is parallel to the plane $\underline{r}(s,t) = \begin{bmatrix} 1+s-t \\ 2s \\ 3-s+2t \end{bmatrix}$.
- 2. The points $A = (0, -1, 1/\sqrt{2}), B = (1, 0, -1/\sqrt{2}), C = (-1, 0, -1/\sqrt{2}), D = (0, 1, 1/\sqrt{2})$ are the vertices of a **tetrahedron** T.

A tetrahedron is characterised by the property that any three vertices define an equilateral triangle. In particular, all of its edges have the same length.

- (a) Verify that the triangle ABD is equilateral i.e. show that each of the interior angles is $\pi/3$.
- (b) Determine the area of ABD. Determine the surface area of the tetrahedron.
- (c) Let $\vec{n}_1, \vec{n}_2, \vec{n}_3, \vec{n}_4$ be outward-pointing, unit length normal vectors to each of the faces of T. Show that

$$\vec{n}_1 + \vec{n}_2 + \vec{n}_3 + \vec{n}_4 = \vec{0}$$

3. (a) Determine the plane Π that's perpendicular to the line $\underline{r}(t) = \begin{bmatrix} -1+2t \\ 3t \\ 2-t \end{bmatrix}$, $t \in \mathbb{R}$, and containing the point P = (1, 1, 1).

the point I = (1, 1, 1).

- (b) Let Q = (4, 5, -3). Define Q' = (a, b, c) to be the point that is the *mirror image* of Q on the opposite side of the plane: this means $\overrightarrow{QQ'}$ is normal to Π and $|\overrightarrow{QQ'}|$ is twice the distance from Q to Π . Determine Q'.
- 4. Consider the path

$$\underline{x}(t) = \begin{bmatrix} 3\cos(t) \\ 2\sin(t) \end{bmatrix}, \quad t \in \mathbb{R}$$

Denote by C the image curve of \underline{x} .

- (a) Let L denote the tangent line to C at $\underline{x}(\pi/4)$. Determine a parametric equation for L.
- (b) L intersects the y-axis at a unique point P = (0, a). Determine a.
- (c) Let $Q = \underline{x}(3\pi/4) \in C$. Show that $\overrightarrow{PQ} = \underline{x}'(3\pi/4)$, the velocity vector of \underline{x} at $t = 3\pi/4$.
- 5. Define spheryndrical coordinates (φ, θ, z) , $0 \le \varphi \le \pi$, $0 \le \theta \le 2\pi$, $z \in \mathbb{R}$, to be the coordinate system related to Cartesian coordinates via the transformation

$$\begin{aligned} x &= z \tan \varphi \cos \theta \\ y &= z \tan \varphi \sin \theta \\ z &= z \end{aligned}$$

(a) Write down the cylindrical coordinates in terms of spheryndrical coordinates

$$r =$$

 $\theta =$
 $z =$

Recall that $r \ge 0, \ 0 \le \theta \le 2\pi, \ z \in \mathbb{R}$.

- (b) Write down a description in terms of spheryndrical coordinates of the double-napped cone $x^2 + y^2 = z^2$.
- (c) Describe the surface given by the spheryndrical equation $z = \cos \varphi$.