
Multivariable Calculus
Spring 2018

Contact: gmelvin@middlebury.edu

April 9 Lecture

Gradient vector fields and potential functions

Learning Objectives:
- Understand the technique of differentiation under the integral.
- Understand what it means for a vector field to admit local potential functions.

Let F =

[
u(x, y)
v(x, y)

]
be a vector field on R2. We are going to investigate the following

multivariable calculus analog of the antiderivative problem:

The Potential Function Problem:

Can we find a function f so that F = ∇f?

That is, we want to determine the existence of a potential function f for F .

Over the next few lectures we will determine (completely) the solution to this exis-
tence problem. We will need to introduce some technical results and new techniques:

• differentiation under the integral

• line integrals

Differentiation under the integral
Consider the function f(x, y) = sin(xy), with domain R2. Define the function

ψ(y) =

∫ π

0

sin(xy)dx

As a function of y, we see that

ψ(y) =

[
−1

y
cos(xy)

]π
0

=
1

y
(1− cos(πy))

Differentiating with respect to y gives

ψ′(y) = − 1

y2
(1− cos(πy) + π sin(πy))

Mathematical workout
Using integration by parts, compute ∫ π

0

∂f

∂y
dx
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Recall that the method of integration by parts states
∫ b
a
fg′ = [fg]ba −

∫ b
a
f ′g.

This example is an instance of the following result:

Differentiation under the integral sign

Let f(x, y) be a continuous function of two variables defined over the
rectangle a ≤ x ≤ b, c ≤ y ≤ d. Assume ∂f

∂y
is continuous. If

ψ(y) =

∫ b

a

f(x, y)dx

then
dψ

dy
=

∫ b

a

∂f(x, y)

∂y
dx (∗)

More generally, if

ψ(x, y) =

∫ x

a

f(t, y)dt

then
∂ψ

∂y
=

∫ x

a

∂f(t, y)

∂y
dt (∗∗)

Remark:

1. The proof of this result requires showing that the limit used to define dψ
dy

and

the limit used to define the definite integral (i.e. as a limit of Riemann sums)
can be interchanged; this requires a careful ε − δ argument and relies on the
assumption that ∂f

∂y
is continuous.

2. The formula (∗) is completely different from the differentiation in the
Fundamental Theorem of Calculus: the F.T.o.C. states, if

g(x) =

∫ x

a

h(t)dt

then d
dx

(g(x)) = h(x). In particular, for a function f(x, y), ψ(x, y) defined as
above, the F.T.o.C. gives

∂ψ

∂x
= f(x, y)
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For example, if f(x, y) = sin(xy) and

ψ(x, y) =

∫ x

0

sin(ty)dt

then the F.T.o.C. gives ∂ψ
∂x

= sin(xy). However, (∗∗) states that

∂ψ

∂y
=

∫ x

0

t cos(ty)dt

Example: Define

ψ(x, y) =

∫ x

0

ey+tdt

Evaluating the integral directly gives

ψ(x, y) =
[
ey+t

]x
0

= ey(ex − 1)

Therefore, ∂ψ
∂y

= ey(ex − 1) = ψ. Alternatively, using (∗∗) and differentiating under
the integral, we have

∂ψ

∂y
=

∫ x

0

∂

∂y
(ey+t)dt =

∫ x

0

ey+tdt = ψ

Local existence of potential functions

Let F : X ⊂ R2 → R2, F (x, y) =

[
u(x, y)
v(x, y)

]
, be a vector field on R2. Assume that

u, v are differentiable and have continuous partial derivatives.

In this section we will show that the Potential Function Problem can be solved
whenever X is the entire plane, an open disc (a set of the form {(x, y) | (x−
a)2 + (y − b)2 < r2}), or an open rectangle a < x < b, c < y < d, and

∂u

∂y
=
∂v

∂x
.

Suppose that X is the entire plane - the proof for the other cases is similar - and
that uy = vx. Fix (a, b) ∈ X. For (x, y) ∈ X, define

f(x, y) =

∫ x

a

u(s, y)ds+

∫ y

b

v(a, t)dt

We claim: ∇f = F . We compute

∂f

∂x
=

∂

∂x

(∫ x

a

u(s, y)ds+

∫ y

b

v(a, t)dt

)
= u(x, y)

since the second integral is independent of x. On the other hand,

∂f

∂y
=

∂

∂y

(∫ x

a

u(s, y)ds+

∫ y

b

v(a, t)dt

)
=

∂

∂y

(∫ x

a

u(s, y)ds

)
+ v(a, y), by the F.T.o.C.

=

∫ x

a

∂u(s, y)

∂y
ds+ v(a, y), differentiating under the integral

=

∫ x

a

∂v(s, y)

∂s
ds+ v(a, y), since

∂u(s, y)

∂y
=
∂v(s, y)

∂s
, by assumption

= [v(s, y)]xa + v(a, y)

= v(x, y)− v(a, y) + v(a, y) = v(x, y)
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We have just defined a function f(x, y) satisfying

∂f

∂x
= u(x, y), and

∂f

∂y
= v(x, y) =⇒ ∇f = F

Important Remark: The vector field

F =

[
− y
x2+y2
x

x2+y2

]
=

[
u
v

]
is defined on X = R2 − {(0, 0)}. Moreover,

∂u

∂y
=
∂v

∂x

but, as we will see in a few lectures, there does not exist a function f whose
domain is X that satisfies ∇f = F . However, the result proved above shows that
there does exist a function f with (for example) domain X : 1 < x < 2, 1 < y < 2
that satisfies ∇f = F .
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