April 9 Lecture

Gradient vector fields and potential functions

Learning Objectives:

- Understand the technique of differentiation under the integral.
- Understand what it means for a vector field to admit local potential functions.

Let $\underline{F}=\left[\begin{array}{l}u(x, y) \\ v(x, y)\end{array}\right]$ be a vector field on \mathbb{R}^{2}. We are going to investigate the following multivariable calculus analog of the antiderivative problem:

The Potential Function Problem:

Can we find a function f so that $\underline{F}=\nabla f$?
That is, we want to determine the existence of a potential function f for \underline{F}.
Over the next few lectures we will determine (completely) the solution to this existence problem. We will need to introduce some technical results and new techniques:

- differentiation under the integral
- line integrals

Differentiation under the integral

Consider the function $f(x, y)=\sin (x y)$, with domain \mathbb{R}^{2}. Define the function

$$
\psi(y)=\int_{0}^{\pi} \sin (x y) d x
$$

As a function of y, we see that

$$
\psi(y)=\left[-\frac{1}{y} \cos (x y)\right]_{0}^{\pi}=\frac{1}{y}(1-\cos (\pi y))
$$

Differentiating with respect to y gives

$$
\psi^{\prime}(y)=-\frac{1}{y^{2}}(1-\cos (\pi y)+\pi \sin (\pi y))
$$

Mathematical workout
Using integration by parts, compute

$$
\int_{0}^{\pi} \frac{\partial f}{\partial y} d x
$$

Recall that the method of integration by parts states $\int_{a}^{b} f g^{\prime}=[f g]_{a}^{b}-\int_{a}^{b} f^{\prime} g$.

This example is an instance of the following result:

Differentiation under the integral sign

Let $f(x, y)$ be a continuous function of two variables defined over the rectangle $a \leq x \leq b, c \leq y \leq d$. Assume $\frac{\partial f}{\partial y}$ is continuous. If

$$
\psi(y)=\int_{a}^{b} f(x, y) d x
$$

then

$$
\begin{equation*}
\frac{d \psi}{d y}=\int_{a}^{b} \frac{\partial f(x, y)}{\partial y} d x \tag{*}
\end{equation*}
$$

More generally, if

$$
\psi(x, y)=\int_{a}^{x} f(t, y) d t
$$

then

$$
\begin{equation*}
\frac{\partial \psi}{\partial y}=\int_{a}^{x} \frac{\partial f(t, y)}{\partial y} d t \tag{**}
\end{equation*}
$$

Remark:

1. The proof of this result requires showing that the limit used to define $\frac{d \psi}{d y}$ and the limit used to define the definite integral (i.e. as a limit of Riemann sums) can be interchanged; this requires a careful $\epsilon-\delta$ argument and relies on the assumption that $\frac{\partial f}{\partial y}$ is continuous.
2. The formula $(*)$ is completely different from the differentiation in the Fundamental Theorem of Calculus: the F.T.o.C. states, if

$$
g(x)=\int_{a}^{x} h(t) d t
$$

then $\frac{d}{d x}(g(x))=h(x)$. In particular, for a function $f(x, y), \psi(x, y)$ defined as above, the F.T.o.C. gives

$$
\frac{\partial \psi}{\partial x}=f(x, y)
$$

For example, if $f(x, y)=\sin (x y)$ and

$$
\psi(x, y)=\int_{0}^{x} \sin (t y) d t
$$

then the F.T.o.C. gives $\frac{\partial \psi}{\partial x}=\sin (x y)$. However, $(* *)$ states that

$$
\frac{\partial \psi}{\partial y}=\int_{0}^{x} t \cos (t y) d t
$$

Example: Define

$$
\psi(x, y)=\int_{0}^{x} e^{y+t} d t
$$

Evaluating the integral directly gives

$$
\psi(x, y)=\left[e^{y+t}\right]_{0}^{x}=e^{y}\left(e^{x}-1\right)
$$

Therefore, $\frac{\partial \psi}{\partial y}=e^{y}\left(e^{x}-1\right)=\psi$. Alternatively, using $(* *)$ and differentiating under the integral, we have

$$
\frac{\partial \psi}{\partial y}=\int_{0}^{x} \frac{\partial}{\partial y}\left(e^{y+t}\right) d t=\int_{0}^{x} e^{y+t} d t=\psi
$$

Local existence of potential functions

Let $\underline{F}: X \subset \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, \underline{F}(x, y)=\left[\begin{array}{l}u(x, y) \\ v(x, y)\end{array}\right]$, be a vector field on \mathbb{R}^{2}. Assume that u, v are differentiable and have continuous partial derivatives.

In this section we will show that the Potential Function Problem can be solved whenever X is the entire plane, an open disc (a set of the form $\{(x, y) \mid(x-$ $\left.a)^{2}+(y-b)^{2}<r^{2}\right\}$), or an open rectangle $a<x<b, c<y<d$, and

$$
\frac{\partial u}{\partial y}=\frac{\partial v}{\partial x} .
$$

Suppose that X is the entire plane - the proof for the other cases is similar - and that $u_{y}=v_{x}$. Fix $(a, b) \in X$. For $(x, y) \in X$, define

$$
f(x, y)=\int_{a}^{x} u(s, y) d s+\int_{b}^{y} v(a, t) d t
$$

We claim: $\nabla f=\underline{F}$. We compute

$$
\frac{\partial f}{\partial x}=\frac{\partial}{\partial x}\left(\int_{a}^{x} u(s, y) d s+\int_{b}^{y} v(a, t) d t\right)=u(x, y)
$$

since the second integral is independent of x. On the other hand,

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(\int_{a}^{x} u(s, y) d s+\int_{b}^{y} v(a, t) d t\right) \\
& =\frac{\partial}{\partial y}\left(\int_{a}^{x} u(s, y) d s\right)+v(a, y), \quad \text { by the F.T.o.C. } \\
& =\int_{a}^{x} \frac{\partial u(s, y)}{\partial y} d s+v(a, y), \quad \text { differentiating under the integral } \\
& =\int_{a}^{x} \frac{\partial v(s, y)}{\partial s} d s+v(a, y), \quad \text { since } \frac{\partial u(s, y)}{\partial y}=\frac{\partial v(s, y)}{\partial s}, \text { by assumption } \\
& =[v(s, y)]_{a}^{x}+v(a, y) \\
& =v(x, y)-v(a, y)+v(a, y)=v(x, y)
\end{aligned}
$$

We have just defined a function $f(x, y)$ satisfying

$$
\frac{\partial f}{\partial x}=u(x, y), \quad \text { and } \quad \frac{\partial f}{\partial y}=v(x, y) \quad \Longrightarrow \quad \nabla f=\underline{F}
$$

Important Remark: The vector field

$$
\underline{F}=\left[\begin{array}{c}
-\frac{y}{x^{2}+y^{2}} \\
\frac{x}{x^{2}+y^{2}}
\end{array}\right]=\left[\begin{array}{l}
u \\
v
\end{array}\right]
$$

is defined on $X=\mathbb{R}^{2}-\{(0,0)\}$. Moreover,

$$
\frac{\partial u}{\partial y}=\frac{\partial v}{\partial x}
$$

but, as we will see in a few lectures, there does not exist a function f whose domain is X that satisfies $\nabla f=\underline{F}$. However, the result proved above shows that there does exist a function f with (for example) domain $X: 1<x<2,1<y<2$ that satisfies $\nabla f=\underline{F}$.

