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APRIL 9 LECTURE
GRADIENT VECTOR FIELDS AND POTENTIAL FUNCTIONS
LEARNING OBJECTIVES:

- Understand the technique of differentiation under the integral.
- Understand what it means for a vector field to admit local potential functions.

Let F' = {géi’ :?jﬂ be a vector field on R?. We are going to investigate the following
multivariable calculus analog of the antiderivative problem:

The Potential Function Problem:

Can we find a function f so that ' = V f7

That is, we want to determine the existence of a potential function f for F.

Over the next few lectures we will determine (completely) the solution to this exis-
tence problem. We will need to introduce some technical results and new techniques:

e differentiation under the integral
e line integrals

Differentiation under the integral
Consider the function f(z,y) = sin(zy), with domain R?. Define the function

Y(y) = /O W sin(zy)dx

As a function of y, we see that

™

0(0) = |~ costem)| = (1= costm)

0

Differentiating with respect to y gives

/) = == (1 = cos(my) + msin(ry)

MATHEMATICAL WORKOUT
Using integration by parts, compute

7T8f

—dx
0 dy



Recall that the method of integration by parts states f: fg =1[f9]° — fab f'g.

This example is an instance of the following result:

Differentiation under the integral sign

Let f(x,y) be a continuous function of two variables defined over the

rectangle a < x < b,c <y < d. Assume g—i is continuous. If
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dp " Of(z,y)
@—/{l —ay dl’ (*)

then

More generally, if
U(z,y) =/ f(ty)dt

then i
M [TOf(ty)
dy « Oy

dt (%)

Remark:

1. The proof of this result requires showing that the limit used to define % and
the limit used to define the definite integral (i.e. as a limit of Riemann sums)
can be interchanged; this requires a careful ¢ — § argument and relies on the
assumption that g—g is continuous.

2. The formula (*) is completely different from the differentiation in the
Fundamental Theorem of Calculus: the F.T.0.C. states, if

then L (g(x)) = h(z). In particular, for a function f(z,y), 1(z,y) defined as
above, the F.T.0.C. gives
oy _

o f(z,y)



For example, if f(x,y) = sin(zy) and
vle,y) = [ sinfey)
0

then the F.T.0.C. gives g—f = sin(zy). However, (xx) states that
oY *
— = t cos(ty)dt
9y 0 (&)

Example: Define
U(z,y) = / eV dt
0
Evaluating the integral directly gives
U(w,y) =[] = V(e — 1)

Therefore, 22 = e¥(e* — 1) = 1). Alternatively, using () and differentiating under

» dy
= /z 2(ey”)dt = /z eV dt =
o Oy 0

the integral, we have
Local existence of potential functions

Let F: X C R? = R? F(z,y) = Béi’zﬂ, be a vector field on R?. Assume that
u, v are differentiable and have continuous partial derivatives.

In this section we will show that the Potential Function Problem can be solved
whenever X is the entire plane, an open disc (a set of the form {(z,y) | (z—
a)® + (y — b)? < r?}), or an open rectangle a < x < b, c <y < d, and

ou  Ov

oy o
Suppose that X is the entire plane - the proof for the other cases is similar - and
that u, = v,. Fix (a,b) € X. For (z,y) € X, define

@ y
fla) = [ uts.gds+ [ ofaty
a b
We claim: Vf = F. We compute

% - % </: u(s,y)ds + /byv(a,t)dt) = u(z,y)

since the second integral is independent of . On the other hand,

g_i = % (/m u(s,y)ds + /byv(a,t)dt)

_ ( ) +(a,y), by the F.T.0.C.

u(s,y)  0Ov(s,y)

d +v(a,y), since = , by assumption

dy 0s

Oy \Ja
/ é ds +v(a,y), differentiating under the integral
/ (

= [v(s y)} +v(a Y)
=v(z,y) —v(a,y) +v(a,y) =v(z,y)
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We have just defined a function f(x,y) satisfying

af

%:u(aj,y), and a—f:v(x,y) — Vf=F

dy

Important Remark: The vector field

== [Z7]-[
22 v

is defined on X = R? — {(0,0)}. Moreover,
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oy Oz
but, as we will see in a few lectures, there does not exist a function f whose
domain is X that satisfies Vf = F. However, the result proved above shows that

there does exist a function f with (for example) domain X : 1 <z <2/1 <y < 2
that satisfies Vf = F.



