April 6 Lecture

Textbook Reference:

- Vector Calculus, Colley, 4th Edition: §3.3, 6.3
- Calculus of Several Variables, Lang: §V. 1

Gradient vector fields and potential functions

Learning Objectives:

- Learn what it means for a vector field to be conservative.
- Learn the definition of a potential function.
- Learn how to find potential functions for certain conservative vector fields.
- Learn the Test for Non-conservative Vector Fields

Let $f: X \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a differentiable scalar-valued function. Then, for $\underline{a} \in X$, $\nabla f(\underline{a})$ is orthogonal to the tangent line of the level curve of f passing through \underline{a}.

For example, the above level curve diagram is for $f(x, y)=x^{2}+y^{2}$, with tangent line to the level curve

$$
x^{2}+y^{2}=16
$$

at the point $(-\sqrt{8}, \sqrt{8})$ and gradient $\nabla f(-\sqrt{8}, \sqrt{8})$ indicated. More generally, the gradient is

$$
\nabla f=\left[\begin{array}{ll}
2 x & 2 y
\end{array}\right]
$$

Writing the transpose of this 1×2 matrix gives a vector field

$$
\underline{F}(x, y)=(\nabla f)^{t}=\left[\begin{array}{l}
2 x \\
2 y
\end{array}\right]
$$

The level curves of f are orthogonal to the vector field

In particular, the level curves of f are orthogonal to the flow lines of \underline{F} : the level curves are NOT flow lines!

Problem:

Given any vector field \underline{F} can we find a function f so that

$$
\underline{F}=(\nabla f)^{t} ?
$$

Remark: By an abuse of notation, we will now consider ∇f as a column vector, so we don't have to keep writing the more cumbersome $(\nabla f)^{t}$.

Example:

1. Consider the vector field $\underline{F}=\left[\begin{array}{c}2 \\ -3\end{array}\right]$. If $f(x, y)$ is a function satisfying

$$
\nabla f=\left[\begin{array}{c}
2 \\
-3
\end{array}\right] \quad \Longrightarrow \quad \frac{\partial f}{\partial x}=2, \quad \text { and } \quad \frac{\partial f}{\partial y}=-3
$$

Hence,

$$
\frac{\partial f}{\partial x}=2 \Longrightarrow f(x, y)=2 x+g(y)
$$

Notice that our 'constant of integration' must be a function of y, given how partial differentiation (with respect to x) is defined. Thus,

$$
-3=\frac{\partial f}{\partial y}=\frac{d g}{d y} \quad \Longrightarrow \quad g(y)=-3 y+C
$$

where C is a constant.
Then, if we let $f(x, y)=2 x-3 y+10$, for example, then $\nabla f=\underline{F}$. Observe that the constant ' +10 ' is arbitrary and could be changed to any constant.
2. Consider the vector field $\underline{F}=\left[\begin{array}{l}2 x^{3} y^{4}+x \\ 2 x^{4} y^{3}+y\end{array}\right]$. If $\nabla h=\underline{F}$, for some $h(x, y)$, then

$$
\frac{\partial h}{\partial x}=2 x^{3} y^{4}+x, \quad \text { and } \quad \frac{\partial h}{\partial y}=2 x^{4} y^{3}+y
$$

Integrating with respect to x, and recalling that we consider y to be constant when taking the partial derivative with respect to x,

$$
\frac{\partial h}{\partial x}=2 x^{3} y^{4}+x \quad \Longrightarrow \quad h(x, y)=\frac{x^{4} y^{4}}{2}+\frac{x^{2}}{2}+k(y)
$$

and

$$
2 x^{4} y^{3}+y=\frac{\partial h}{\partial y}=2 x^{4} y^{3}+k^{\prime}(y) \quad \Longrightarrow \quad k^{\prime}(y)=y
$$

Hence,

$$
k(y)=\int y d y=\frac{y^{2}}{2}+C
$$

where C is a constant of integration. Therefore, if we let

$$
h(x, y)=\frac{1}{2} x^{4} y^{4}+\frac{1}{2} x^{2}+\frac{1}{2} y^{2}+1
$$

Then, $\nabla h=\underline{F}$. Observe that the constant ' +1 ' is arbitrary and could be changed to any constant.

Let \underline{F} be a vector field. If there exists a function f so that $\nabla f=\underline{F}$ then we say that \underline{F} is a conservative (or gradient) vector field, and call f a potential function of \underline{F}.

Example: Both vector fields given in the Example above are conservative. The functions $f(x, y)=2 x-3 y+10$ and $h(x, y)=\frac{1}{2}\left(x^{4} y^{4}+x^{2}+y^{2}\right)+1$ are potential functions.
Our Problem above is translated to: let \underline{F} be a vector field. Is \underline{F} conservative?

Problem:

Let \underline{F} be a vector field. Is \underline{F} conservative?
Remark: the above problem can be posed for a vector field $\underline{F}: X \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ defined on \mathbb{R}^{n}.

We will now see a useful criterion for showing a vector field is not conservative in the case that \underline{F} is a vector field in \mathbb{R}^{2}.
Suppose that $\underline{F}=\left[\begin{array}{l}u(x, y) \\ v(x, y)\end{array}\right]$ is conservative, say $\underline{F}=\nabla f$. Therefore,

$$
u(x, y)=\frac{\partial f}{\partial x}, \quad \text { and } \quad v(x, y)=\frac{\partial f}{\partial y}
$$

If we assume that $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ are differentiable and have continuous partial derivatives then Clairaut's Theorem (see March 21 Lecture) states that

$$
\frac{\partial^{2} f}{\partial y \partial x}=\frac{\partial^{2} f}{\partial x \partial y}
$$

In particular, if $\underline{F}=\left[\begin{array}{l}u(x, y) \\ v(x, y)\end{array}\right]$ is conservative then

$$
\frac{\partial u}{\partial y}=\frac{\partial v}{\partial x}
$$

Therefore,

Test for Non-conservative Vector Fields

Let

$$
\underline{F}=\left[\begin{array}{l}
u(x, y) \\
v(x, y)
\end{array}\right]
$$

be a vector field on \mathbb{R}^{2}. If

$$
\frac{\partial u}{\partial y} \neq \frac{\partial v}{\partial x}
$$

then \underline{F} is not conservative.
Example: Consider the vector field

$$
\underline{F}=\left[\begin{array}{c}
x^{2} y \\
\sin (x y)
\end{array}\right]
$$

Here

$$
u(x, y)=x^{2} y, \quad \text { and } \quad v(x, y)=\sin (x y)
$$

Both u and v are differentiable with continuous partial derivatives. We compute

$$
\frac{\partial u}{\partial y}=x^{2} \neq y \cos (x y)=\frac{\partial v}{\partial x}
$$

Hence, \underline{F} is not conservative.
Important Remark: The vector field

$$
\underline{F}=\left[\begin{array}{c}
-\frac{y}{x^{2}+y^{2}} \\
\frac{x}{x^{2}+y^{2}}
\end{array}\right]=\left[\begin{array}{l}
u \\
v
\end{array}\right]
$$

defined on $\mathbb{R}^{2}-\{(0,0)\}$, satisfies (exercise!)

$$
\frac{\partial u}{\partial y}=\frac{\partial v}{\partial x}
$$

but we will soon see that \underline{F} is not conservative!

