April 4 Lecture

Textbook Reference:

- Vector Calculus, Colley, 4th Edition: §2.6

Directional Derivative

Learning Objectives:

- Learn how to compute the directional derivative.
- Learn how to compute the tangent line/plane to a level curve/surface.

Directional Derivatives: Given a differentiable function $f: X \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}, \underline{a} \in X$, $\underline{v} \in \mathbb{R}^{n}$, the directional derivative of f at \underline{a} in the direction \underline{v} is

$$
D_{\underline{v}} f(\underline{a})=\nabla f(\underline{a}) \underline{v}
$$

1. Compute the directional derivative of $f(x, y)=x^{2}+3 x y+y^{2}$ at the point $(2,1)$ in the direction that points towards the origin.
2. Find a nonzero vector $\underline{v} \in \mathbb{R}^{2}$ so that $D_{\underline{v}} f(2,1)=0$
3. Let $\underline{w} \in \mathbb{R}^{2}$ be a vector satisfying $\underline{w} \cdot \underline{v}>0$ and $\underline{w} \cdot\left[\begin{array}{l}-2 \\ -1\end{array}\right]<0$. Is f increasing in the direction \underline{w} at $(2,1)$? (Recall that, if $\underline{a} \cdot \underline{b}>0($ resp.$<0)$ then angle between \underline{a}, \underline{b} is acute (resp. obtuse))

Tangent lines/planes of level sets: Let S be a level set of $f: X \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$, where $n=2,3$. This means $S=\{\underline{x} \mid f(\underline{x})=c\}$, for some c. Then, $\nabla f(\underline{a})$ is

- perpendicular to the tangent line to S at $\underline{a}(n=2)$,
- normal to the tangent plane to S at $\underline{a}(n=3)$.

1. Consider the curve $y^{2}=x^{3}-4 x+1$.

(a) Find a function $h(x, y)$ so that the curve is a level curve of h
(b) Compute the tangent line to the curve at $(2,1)$.
(c) Determine the point $(x, y), y>0$, where the tangent line is horizontal.
2. Consider the paraboloid $z=x^{2}+y^{2}$. This is the graph of the function $f(x, y)=$ $x^{2}+y^{2}$.
(a) Find a function $g(x, y, z)$ so that the paraboloid is a level set of g.
(b) Determine the tangent plane to the paraboloid at $(1,2,5)$
(c) Suppose that $z=f(x, y)$ is a surface. Generalise your approach above to determine the tangent plane to the surface at $(a, b, f(a, b))$.
