April 2 Lecture

Textbook Reference:

- Vector Calculus, Colley, 4th Edition: §2.4, 2.5

The Derivative and Chain Rule

Learning Objectives:

- Understand the definition and basic properties of the derivative of a vector-valued function of several variables.
- Learn how to use the Chain Rule for functions of several variables

Keywords: matrix of partial derivatives, the derivative, Chain Rule

The derivative of scalar-valued functions

Let $f: X \subseteq \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a function of two variables. The gradient of f at \underline{a} is the (row) vector

$$
\nabla f(\underline{a})=\left[\begin{array}{ll}
f_{x}(\underline{a}) & f_{y}(\underline{a})
\end{array}\right]
$$

Recall: the linearisation of f at $\underline{a}=(a, b) \in X$ is

$$
L(x, y)=f(a, b)+f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)
$$

which we may rewrite as

$$
L(\underline{x})=f(\underline{a})+\nabla f(\underline{a})(\underline{x}-\underline{a}), \quad \underline{x}=\left[\begin{array}{l}
x \tag{*}\\
y
\end{array}\right]
$$

The product here is muliplication of the 1×2 matrix $\nabla f(\underline{a})$ with the 2×1 matrix $\underline{x}-\underline{a}$.

Remark:

1. Note the analogy with the equation of a tangent line of the graph of a single variable function:

$$
y=f(a)+f^{\prime}(a)(x-a) .
$$

Thus, the gradient $\nabla f(\underline{x})$ plays a role analogous to the derivative.
2. The above remarks generalise to scalar-valed functions $f: X \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$, where we define the gradient of f at \underline{a} to be the $1 \times n$ row vector

$$
\nabla f(\underline{a})=\left[\begin{array}{llll}
f_{x_{1}}(\underline{a}) & f_{x_{2}}(\underline{a}) & \cdots & f_{x_{n}}(\underline{a})
\end{array}\right]
$$

Differentiability of vector-valued functions

Suppose that $\mathbf{f}: X \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a vector-valued function, $\mathbf{f}(\underline{x})=\left(f_{1}(\underline{x}), \ldots, f_{m}(\underline{x})\right)$, with each $f_{1}, \ldots, f_{m}: X \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$ a scalar-valued function.

Goal: we want to define what it means for $\mathbf{f}(\underline{x})$ to be differentiable at a point.

Define the matrix of partial derivatives of \mathbf{f} at $\underline{a} \in X$, or the Jacobian matrix of \mathbf{f} at \underline{a}, to be the $m \times n$ matrix $D \mathbf{f}(\underline{a})$ having $i^{t h}$ row $\nabla f_{i}(\underline{a})$:

$$
D \mathbf{f}(\underline{a})=\left[\begin{array}{cccc}
\frac{\partial f_{1}}{\partial x_{1}}(\underline{a}) & \frac{\partial f_{1}}{\partial x_{2}}(\underline{a}) & \cdots & \frac{\partial f_{1}}{\partial x_{n}}(\underline{a}) \\
\frac{\partial f_{2}}{\partial x_{1}}(\underline{a}) & \frac{\partial f_{2}}{\partial x_{2}}(\underline{a}) & \cdots & \frac{\partial f_{2}}{\partial x_{n}}(\underline{a}) \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial f_{m}}{\partial x_{1}}(\underline{a}) & \frac{\partial f_{m}}{\partial x_{2}}(\underline{a}) & \cdots & \frac{\partial f_{m}}{\partial x_{n}}(\underline{a})
\end{array}\right]
$$

We write $D \mathbf{f}(\underline{x})$, or simply $D \mathbf{f}$, for the $m \times n$ matrix whose $i j$-entry is $\frac{\partial f_{i}}{\partial x_{j}}(\underline{x})$, and call it the Jacobian of f.
Remark: If $f(\underline{x})$ is a scalar-valued function then $D f(\underline{x})=\nabla f(\underline{x})$; if $\underline{r}(t)$ is a path in \mathbb{R}^{n} then $D \underline{r}(t)=\underline{r}^{\prime}(t)$ computes the velocity vector of $\underline{r}(t)$.

Define the linearisation of \mathbf{f} at $\underline{a} \in X$ to be the function

$$
\mathbf{L}(\underline{x})=\mathbf{f}(\underline{a})+D \mathbf{f}(\underline{a})(\underline{x}-\underline{a}), \quad \underline{x} \in \mathbb{R}^{n}
$$

The product here is multiplication of the $m \times n$ matrix with the $n \times 1$ matrix $\underline{x}-\underline{a}$. In particular, $\mathbf{L}(\underline{x}) \in \mathbb{R}^{m}$.

Example: Consider the function

$$
\mathbf{f}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3},(x, y) \mapsto\left(x^{2}+y, 2 x y, x+y^{2}\right)
$$

Then,

$$
D \mathbf{f}(\underline{x})=\left[\begin{array}{cc}
2 x & 1 \\
2 y & 2 x \\
1 & 2 y
\end{array}\right]
$$

Differentiability of $\mathbf{f}(\underline{x})$

Let $\mathbf{f}: X \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a vector-valued function. We say that \mathbf{f} is differentiable at $\underline{a} \in X$ if all partial derivatives $f_{x_{i}}(\underline{a})$ exist and if

$$
\lim _{\underline{x} \rightarrow \underline{a}} \frac{\mathbf{f}(\underline{x})-\mathbf{L}(\underline{x})}{|\underline{x}-\underline{a}|}=0
$$

If \mathbf{f} is differentiable for every $\underline{a} \in X$ then we say that \mathbf{f} is differentiable.
There are analogous results as for the two variable case.

Sufficient Condition for differentiability

Let $\mathbf{f}: X \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, \underline{a} \in X$. If all partial derivatives $f_{x_{i}}(\underline{x})$ are continuous nearby to \underline{a} then \mathbf{f} is differentiable at \underline{a}.

Necessary Condition for differentiability

Let $\mathbf{f}: X \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, \underline{a} \in X$. If \mathbf{f} is differentiable at \underline{a} then \mathbf{f} is continuous at \underline{a}.

Moreover, we can reduce differentiability of vector-valued functions to the differentiability of its component functions

Let $\mathbf{f}: X \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, \mathbf{f}(\underline{x})=\left(f_{1}(\underline{x}), \ldots f_{m}(\underline{x})\right), \underline{a} \in X$. If f_{1}, \ldots, f_{m} are differentiable at \underline{a} then \mathbf{f} is differentiable at \underline{a}.

What is the derivative?

Observe the similarity between the linearisation of \mathbf{f} at \underline{a}

$$
\mathbf{L}(\underline{x})=\mathbf{f}(\underline{a})+D \mathbf{f}(\underline{a})(\underline{x}-\underline{a})
$$

and function whose graph is the tangent line of a single variable function $f(x)$:

$$
L(x)=f(a)+f^{\prime}(a)(x-a)
$$

Define the 'multiplication by $D \mathbf{f}(\underline{a})$ ' linear map

$$
T_{D \mathbf{f}(\underline{a})}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, \underline{x} \mapsto D \mathbf{f}(\underline{a}) \underline{x}
$$

then the linear map $T_{D \mathbf{f}(\underline{a})}$ plays the role of the derivative.
The derivative of a vector-valued function f of several variables is the linear map defined by the Jacobian of f.

Remark: Identifying a linear map with its standard matrix, we will also say that $D \mathbf{f}(\underline{a})$ is the derivative of $\mathbf{f}(\underline{x})$ at $\underline{x}=\underline{a}$.

The Chain Rule

Recall the Chain Rule for functions of a single variable x : let $f(x), g(x)$ be differentiable functions defined at $x=a$. Then,

$$
\begin{equation*}
(f \circ g)^{\prime}(a)=f^{\prime}(g(a)) g^{\prime}(a) \tag{*}
\end{equation*}
$$

In words: the derivative of a composition is an appropriate product of derivatives.

If $\mathbf{f}=Y \subset \mathbb{R}^{m} \rightarrow \mathbb{R}^{p}, \mathbf{g}: X \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ are functions of several variables for which the composition $\mathbf{f} \circ \mathbf{g}$ makes sense (i.e. $\mathbf{g}(\underline{u}) \subset Y$, for any $\underline{u} \in X$) then it's reasonable to expect the following analog of $(*)$:

$$
\begin{equation*}
D(\mathbf{f} \circ \mathbf{g})(\underline{a})=D \mathbf{f}(\mathbf{g}(\underline{a})) D \mathbf{g}(\underline{a}) \tag{**}
\end{equation*}
$$

This is the Chain Rule for functions of several variables.
Remark:

1. The product on the right-hand side of $(* *)$ is the product of the $p \times m$ matrix $D \mathbf{f}(\mathbf{g}(\underline{a}))$ with the $m \times n$ matrix $D \mathbf{g}(\underline{a})$.
2. To prove the Chain Rule you need to show an equality of matrices: this means you must show that the $i j$ entry on the LHS equals the $i j$ entry on the RHS. The $i j$ entry on the LHS is $\frac{\partial\left(f_{i} \circ \mathrm{~g}\right)}{\partial u_{j}}(\underline{a})$ and the $i j$ entry on the RHS is $\nabla f_{i}(\mathbf{g}(\underline{a}))(D \mathbf{g}(\underline{a}))_{j}$, where $(D \mathbf{g}(\underline{a}))_{j}$ is the $j^{\text {th }}$ column of $D \mathbf{g}(\underline{a})$. That these two quantities are equal now follows from the Chain Rule for single variable functions and the definition of partial derivatives.

Example:

1. Let $f(x, y)=x^{2}+3 y^{2}, \underline{r}(t)=\left(2 t, t^{2}\right)$. Then,

$$
f \circ \underline{r}: \mathbb{R} \rightarrow \mathbb{R}, t \mapsto(2 t)^{2}+3\left(t^{2}\right)^{2}=4 t^{2}+3 t^{4}
$$

In this case, $D(f \circ \underline{r})(t)$ is precisely the derivative $(f \circ \underline{r})^{\prime}(t)=8 t+12 t^{3}$.
Let's compute the right-hand side of the Chain Rule: we have

$$
\begin{gathered}
D \underline{r}(t)=\underline{r}^{\prime}(t)=\left[\begin{array}{c}
2 \\
2 t
\end{array}\right] \\
D f(\underline{x})=\nabla f(\underline{x})=\left[\begin{array}{ll}
2 x & 6 y
\end{array}\right] \Longrightarrow D f(\underline{r}(t))=\left[\begin{array}{ll}
4 t & 6 t^{2}
\end{array}\right]
\end{gathered}
$$

Hence,

$$
D f(\underline{r}(t)) D \underline{r}(t)=\left[\begin{array}{ll}
4 t & 6 t^{2}
\end{array}\right]\left[\begin{array}{c}
2 \\
2 t
\end{array}\right]=8 t+12 t^{3}
$$

2. Let $h(x, y, z)=x+y z$ and

$$
\mathbf{f}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3},(x, y) \mapsto\left(x^{2}+y, 2 x y, x+y^{2}\right)
$$

Then,

$$
\begin{aligned}
(h \circ \mathbf{f})(x, y, z) & =h\left(x^{2}+y, 2 x y, x+y^{2}\right) \\
& =\left(x^{2}+y\right)+(2 x y)\left(x+y^{2}\right) \\
& =x^{2}+y+2 x^{2} y+2 x y^{3}
\end{aligned}
$$

Hence,

$$
D(h \circ \mathbf{f})(\underline{x})=\nabla(h \circ \mathbf{f})(\underline{x})=\left[\begin{array}{ll}
2 x+4 x y+2 y^{3} & 1+2 x^{2}+6 x y^{2}
\end{array}\right]
$$

Computing the right-hand side of $(* *)$:

$$
D h(\underline{x})=\nabla h(\underline{x}))=\left[\begin{array}{lll}
1 & z & y
\end{array}\right] \quad \Longrightarrow \quad \operatorname{Dh}(\mathbf{f}(\underline{x}))=\left[\begin{array}{lll}
1 & x+y^{2} & 2 x y
\end{array}\right]
$$

and

$$
D \mathbf{f}(\underline{x})=\left[\begin{array}{cc}
2 x & 1 \\
2 y & 2 x \\
1 & 2 y
\end{array}\right]
$$

Then,
$\operatorname{Dh}(\mathbf{f}(\underline{x})) \operatorname{Df}(\underline{x})=\left[\begin{array}{lll}1 & x+y^{2} & 2 x y\end{array}\right]\left[\begin{array}{cc}2 x & 1 \\ 2 y & 2 x \\ 1 & 2 y\end{array}\right]=\left[\begin{array}{ll}2 x+4 x y+2 y^{3} & 1+2 x^{2}+6 x y^{2}\end{array}\right]$
3. Let

$$
\begin{aligned}
& \mathbf{f}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3},(x, y) \mapsto\left(x^{2}+y, 2 x y, x+y^{2}\right) \\
& \mathbf{g}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2},(u, v, w) \mapsto\left(u^{2}+v, 3 w-u\right)
\end{aligned}
$$

Then,

$$
\mathbf{f} \circ \mathbf{g}(\underline{u})=\left(\left(u^{2}+v\right)^{2}+3 w-u, 2\left(u^{2}+v\right)(3 w-u), u^{2}+v+(3 w-u)^{2}\right)
$$

and

$$
D(\mathbf{f} \circ \mathbf{g})(\underline{u})=\left[\begin{array}{ccc}
4 u^{3}+4 u v-1 & 2 u^{2}+2 v & 3 \\
12 u w-6 u^{2}-2 v & 6 w-2 u & 6 v+6 u^{2} \\
4 u-6 w & 1 & 18 w-6 u
\end{array}\right]
$$

Computing the righ-hand side of $(* *)$:

$$
\begin{gathered}
D \mathbf{f}(\underline{x})=\left[\begin{array}{cc}
2 x & 1 \\
2 y & 2 x \\
1 & 2 y
\end{array}\right] \Longrightarrow \quad D \mathbf{f}(\mathbf{g}(\underline{u}))=\left[\begin{array}{cc}
2\left(u^{2}+v\right) & 1 \\
2(3 w-u) & 2\left(u^{2}+v\right) \\
1 & 2(3 w-u)
\end{array}\right] \\
\text { and } \quad D \mathbf{g}(\underline{u})=\left[\begin{array}{ccc}
2 u & 1 & 0 \\
-1 & 0 & 3
\end{array}\right]
\end{gathered}
$$

Hence,

$$
\begin{gathered}
D \mathbf{f}(\mathbf{g}(\underline{u})) D \mathbf{g}(\underline{u})=\left[\begin{array}{cc}
2\left(u^{2}+v\right) & 1 \\
2(3 w-u) & 2\left(u^{2}+v\right) \\
1 & 2(3 w-u)
\end{array}\right]\left[\begin{array}{ccc}
2 u & 1 & 0 \\
-1 & 0 & 3
\end{array}\right] \\
=\left[\begin{array}{ccc}
4 u^{3}+4 u v-1 & 2 u^{2}+2 v & 3 \\
12 u w-6 u^{2}-2 v & 6 w-2 u & 6 v+6 u^{2} \\
4 u-6 w & 1 & 18 w-6 u
\end{array}\right]
\end{gathered}
$$

