

April 2 Lecture

TEXTBOOK REFERENCE:

- Vector Calculus, Colley, 4th Edition: §2.4, 2.5

The Derivative and Chain Rule

LEARNING OBJECTIVES:

- Understand the definition and basic properties of the derivative of a vector-valued function of several variables.

- Learn how to use the Chain Rule for functions of several variables

KEYWORDS: matrix of partial derivatives, the derivative, Chain Rule

The derivative of scalar-valued functions

Let $f: X \subseteq \mathbb{R}^2 \to \mathbb{R}$ be a function of two variables. The **gradient of** f **at** \underline{a} is the (row) vector

$$\nabla f(\underline{a}) = \begin{bmatrix} f_x(\underline{a}) & f_y(\underline{a}) \end{bmatrix}$$

Recall: the linearisation of f at $\underline{a} = (a, b) \in X$ is

$$L(x,y) = f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b)$$

which we may rewrite as

$$L(\underline{x}) = f(\underline{a}) + \nabla f(\underline{a})(\underline{x} - \underline{a}), \qquad \underline{x} = \begin{bmatrix} x \\ y \end{bmatrix}$$
(1*)

The product here is multiplication of the 1×2 matrix $\nabla f(\underline{a})$ with the 2×1 matrix $\underline{x} - \underline{a}$.

Remark:

1. Note the analogy with the equation of a tangent line of the graph of a single variable function:

$$y = f(a) + f'(a)(x - a).$$

Thus, the gradient $\nabla f(\underline{x})$ plays a role analogous to the derivative.

2. The above remarks generalise to scalar-valed functions $f : X \subseteq \mathbb{R}^n \to \mathbb{R}$, where we define **the gradient of** f **at** \underline{a} to be the $1 \times n$ row vector

$$\nabla f(\underline{a}) = \begin{bmatrix} f_{x_1}(\underline{a}) & f_{x_2}(\underline{a}) & \cdots & f_{x_n}(\underline{a}) \end{bmatrix}$$

Differentiability of vector-valued functions

Suppose that $\mathbf{f}: X \subset \mathbb{R}^n \to \mathbb{R}^m$ is a **vector-valued** function, $\mathbf{f}(\underline{x}) = (f_1(\underline{x}), \dots, f_m(\underline{x}))$, with each $f_1, \dots, f_m: X \subseteq \mathbb{R}^n \to \mathbb{R}$ a scalar-valued function.

Define the matrix of partial derivatives of f at $\underline{a} \in X$, or the Jacobian matrix of f at \underline{a} , to be the $m \times n$ matrix $D\mathbf{f}(\underline{a})$ having i^{th} row $\nabla f_i(\underline{a})$:

$$D\mathbf{f}(\underline{a}) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1}(\underline{a}) & \frac{\partial f_1}{\partial x_2}(\underline{a}) & \cdots & \frac{\partial f_1}{\partial x_n}(\underline{a}) \\ \frac{\partial f_2}{\partial x_1}(\underline{a}) & \frac{\partial f_2}{\partial x_2}(\underline{a}) & \cdots & \frac{\partial f_2}{\partial x_n}(\underline{a}) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1}(\underline{a}) & \frac{\partial f_m}{\partial x_2}(\underline{a}) & \cdots & \frac{\partial f_m}{\partial x_n}(\underline{a}) \end{bmatrix}$$

We write $D\mathbf{f}(\underline{x})$, or simply $D\mathbf{f}$, for the $m \times n$ matrix whose *ij*-entry is $\frac{\partial f_i}{\partial x_j}(\underline{x})$, and call it the **Jacobian of** f.

Remark: If $f(\underline{x})$ is a scalar-valued function then $Df(\underline{x}) = \nabla f(\underline{x})$; if $\underline{r}(t)$ is a path in \mathbb{R}^n then $D\underline{r}(t) = \underline{r}'(t)$ computes the velocity vector of $\underline{r}(t)$.

Define the **linearisation of f at** $\underline{a} \in X$ to be the function

$$\mathbf{L}(\underline{x}) = \mathbf{f}(\underline{a}) + D\mathbf{f}(\underline{a})(\underline{x} - \underline{a}), \quad \underline{x} \in \mathbb{R}^n$$

The product here is multiplication of the $m \times n$ matrix with the $n \times 1$ matrix $\underline{x} - \underline{a}$. In particular, $\mathbf{L}(\underline{x}) \in \mathbb{R}^m$.

Example: Consider the function

$$\mathbf{f}:\mathbb{R}^2\to\mathbb{R}^3\,,\;(x,y)\mapsto(x^2+y,2xy,x+y^2)$$

Then,

$$D\mathbf{f}(\underline{x}) = \begin{bmatrix} 2x & 1\\ 2y & 2x\\ 1 & 2y \end{bmatrix}$$

Differentiability of $f(\underline{x})$

Let $\mathbf{f} : X \subseteq \mathbb{R}^n \to \mathbb{R}^m$ be a vector-valued function. We say that \mathbf{f} is differentiable at $\underline{a} \in X$ if all partial derivatives $f_{x_i}(\underline{a})$ exist and if

$$\lim_{\underline{x} \to \underline{a}} \frac{\mathbf{f}(\underline{x}) - \mathbf{L}(\underline{x})}{|\underline{x} - \underline{a}|} = 0$$

If **f** is differentiable for every $\underline{a} \in X$ then we say that **f** is differentiable.

There are analogous results as for the two variable case.

Sufficient Condition for differentiability

Let $\mathbf{f} : X \subseteq \mathbb{R}^n \to \mathbb{R}^m$, $\underline{a} \in X$. If all partial derivatives $f_{x_i}(\underline{x})$ are continuous nearby to \underline{a} then \mathbf{f} is differentiable at \underline{a} .

Necessary Condition for differentiability

Let $\mathbf{f}: X \subseteq \mathbb{R}^n \to \mathbb{R}^m$, $\underline{a} \in X$. If \mathbf{f} is differentiable at \underline{a} then \mathbf{f} is continuous at \underline{a} .

Moreover, we can reduce differentiability of vector-valued functions to the differentiability of its component functions

Let $\mathbf{f}: X \subseteq \mathbb{R}^n \to \mathbb{R}^m$, $\mathbf{f}(\underline{x}) = (f_1(\underline{x}), \dots, f_m(\underline{x})), \underline{a} \in X$. If f_1, \dots, f_m are differentiable at \underline{a} then \mathbf{f} is differentiable at \underline{a} .

What is the derivative?

Observe the similarity between the linearisation of \mathbf{f} at \underline{a}

$$\mathbf{L}(\underline{x}) = \mathbf{f}(\underline{a}) + D\mathbf{f}(\underline{a})(\underline{x} - \underline{a})$$

and function whose graph is the tangent line of a single variable function f(x):

$$L(x) = f(a) + f'(a)(x - a)$$

Define the 'multiplication by $D\mathbf{f}(\underline{a})$ ' linear map

$$T_{D\mathbf{f}(\underline{a})} : \mathbb{R}^n \to \mathbb{R}^m , \ \underline{x} \mapsto D\mathbf{f}(\underline{a})\underline{x}$$

then the linear map $T_{Df(a)}$ plays the role of **the derivative**.

The derivative of a vector-valued function f of several variables is the linear map defined by the Jacobian of f.

Remark: Identifying a linear map with its standard matrix, we will also say that $D\mathbf{f}(\underline{a})$ is the derivative of $\mathbf{f}(\underline{x})$ at $\underline{x} = \underline{a}$.

The Chain Rule

Recall the Chain Rule for functions of a single variable x: let f(x), g(x) be differentiable functions defined at x = a. Then,

$$(f \circ g)'(a) = f'(g(a))g'(a)$$
 (*)

In words: the derivative of a composition is an <u>appropriate</u> product of derivatives.

If $\mathbf{f} = Y \subset \mathbb{R}^m \to \mathbb{R}^p$, $\mathbf{g} : X \subset \mathbb{R}^n \to \mathbb{R}^m$ are functions of several variables for which the composition $\mathbf{f} \circ \mathbf{g}$ makes sense (i.e. $\mathbf{g}(\underline{u}) \subset Y$, for any $\underline{u} \in X$) then it's reasonable to expect the following analog of (*):

$$D(\mathbf{f} \circ \mathbf{g})(\underline{a}) = D\mathbf{f}(\mathbf{g}(\underline{a}))D\mathbf{g}(\underline{a})$$
(**)

This is the Chain Rule for functions of several variables.

Remark:

- 1. The product on the right-hand side of (**) is the product of the $p \times m$ matrix $D\mathbf{f}(\mathbf{g}(\underline{a}))$ with the $m \times n$ matrix $D\mathbf{g}(\underline{a})$.
- 2. To prove the Chain Rule you need to show an equality of matrices: this means you must show that the ij entry on the LHS equals the ij entry on the RHS. The ij entry on the LHS is $\frac{\partial (f_i \circ \mathbf{g})}{\partial u_j}(\underline{a})$ and the ij entry on the RHS is $\nabla f_i(\mathbf{g}(\underline{a}))(D\mathbf{g}(\underline{a}))_j$, where $(D\mathbf{g}(\underline{a}))_j$ is the j^{th} column of $D\mathbf{g}(\underline{a})$. That these two quantities are equal now follows from the Chain Rule for single variable functions and the definition of partial derivatives.

Example:

1. Let $f(x,y) = x^2 + 3y^2$, $\underline{r}(t) = (2t, t^2)$. Then,

$$f \circ \underline{r} : \mathbb{R} \to \mathbb{R}$$
, $t \mapsto (2t)^2 + 3(t^2)^2 = 4t^2 + 3t^4$

In this case, $D(f \circ \underline{r})(t)$ is precisely the derivative $(f \circ \underline{r})'(t) = 8t + 12t^3$. Let's compute the right-hand side of the Chain Rule: we have

$$D\underline{r}(t) = \underline{r}'(t) = \begin{bmatrix} 2\\2t \end{bmatrix}$$
$$Df(\underline{x}) = \nabla f(\underline{x}) = \begin{bmatrix} 2x & 6y \end{bmatrix} \implies Df(\underline{r}(t)) = \begin{bmatrix} 4t & 6t^2 \end{bmatrix}$$

Hence,

$$Df(\underline{r}(t))D\underline{r}(t) = \begin{bmatrix} 4t & 6t^2 \end{bmatrix} \begin{bmatrix} 2\\ 2t \end{bmatrix} = 8t + 12t^3$$

2. Let h(x, y, z) = x + yz and

$$\mathbf{f}: \mathbb{R}^2 \to \mathbb{R}^3$$
, $(x, y) \mapsto (x^2 + y, 2xy, x + y^2)$

Then,

$$(h \circ \mathbf{f})(x, y, z) = h(x^2 + y, 2xy, x + y^2)$$

= $(x^2 + y) + (2xy)(x + y^2)$
= $x^2 + y + 2x^2y + 2xy^3$

Hence,

$$D(h \circ \mathbf{f})(\underline{x}) = \nabla(h \circ \mathbf{f})(\underline{x}) = \begin{bmatrix} 2x + 4xy + 2y^3 & 1 + 2x^2 + 6xy^2 \end{bmatrix}$$

Computing the right-hand side of (**):

$$Dh(\underline{x}) = \nabla h(\underline{x})) = \begin{bmatrix} 1 & z & y \end{bmatrix} \implies Dh(\mathbf{f}(\underline{x})) = \begin{bmatrix} 1 & x + y^2 & 2xy \end{bmatrix}$$

and

$$D\mathbf{f}(\underline{x}) = \begin{bmatrix} 2x & 1\\ 2y & 2x\\ 1 & 2y \end{bmatrix}$$

Then,

$$Dh(\mathbf{f}(\underline{x}))D\mathbf{f}(\underline{x}) = \begin{bmatrix} 1 & x+y^2 & 2xy \end{bmatrix} \begin{bmatrix} 2x & 1\\ 2y & 2x\\ 1 & 2y \end{bmatrix} = \begin{bmatrix} 2x+4xy+2y^3 & 1+2x^2+6xy^2 \end{bmatrix}$$

3. Let

$$\begin{aligned} \mathbf{f} &: \mathbb{R}^2 \to \mathbb{R}^3 , \ (x,y) \mapsto (x^2 + y, 2xy, x + y^2) \\ \mathbf{g} &: \mathbb{R}^3 \to \mathbb{R}^2 , \ (u,v,w) \mapsto (u^2 + v, 3w - u) \end{aligned}$$

Then,

$$\mathbf{f} \circ \mathbf{g}(\underline{u}) = ((u^2 + v)^2 + 3w - u, 2(u^2 + v)(3w - u), u^2 + v + (3w - u)^2)$$

and

$$D(\mathbf{f} \circ \mathbf{g})(\underline{u}) = \begin{bmatrix} 4u^3 + 4uv - 1 & 2u^2 + 2v & 3\\ 12uw - 6u^2 - 2v & 6w - 2u & 6v + 6u^2\\ 4u - 6w & 1 & 18w - 6u \end{bmatrix}$$

Computing the righ-hand side of (**):

$$D\mathbf{f}(\underline{x}) = \begin{bmatrix} 2x & 1\\ 2y & 2x\\ 1 & 2y \end{bmatrix} \implies D\mathbf{f}(\mathbf{g}(\underline{u})) = \begin{bmatrix} 2(u^2 + v) & 1\\ 2(3w - u) & 2(u^2 + v)\\ 1 & 2(3w - u) \end{bmatrix}$$

and
$$D\mathbf{g}(\underline{u}) = \begin{bmatrix} 2u & 1 & 0\\ -1 & 0 & 3 \end{bmatrix}$$

Hence,

$$D\mathbf{f}(\mathbf{g}(\underline{u}))D\mathbf{g}(\underline{u}) = \begin{bmatrix} 2(u^2+v) & 1\\ 2(3w-u) & 2(u^2+v)\\ 1 & 2(3w-u) \end{bmatrix} \begin{bmatrix} 2u & 1 & 0\\ -1 & 0 & 3 \end{bmatrix}$$
$$= \begin{bmatrix} 4u^3 + 4uv - 1 & 2u^2 + 2v & 3\\ 12uw - 6u^2 - 2v & 6w - 2u & 6v + 6u^2\\ 4u - 6w & 1 & 18w - 6u \end{bmatrix}$$