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The Derivative and Chain Rule

Learning Objectives:
- Understand the definition and basic properties of the derivative of a vector-valued
function of several variables.
- Learn how to use the Chain Rule for functions of several variables
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The derivative of scalar-valued functions
Let f : X ⊆ R2 → R be a function of two variables. The gradient of f at a is the
(row) vector

∇f(a) =
[
fx(a) fy(a)

]
Recall: the linearisation of f at a = (a, b) ∈ X is

L(x, y) = f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b)

which we may rewrite as

L(x) = f(a) +∇f(a)(x− a), x =

[
x
y

]
(1*)

The product here is muliplication of the 1 × 2 matrix ∇f(a) with the 2 × 1 matrix
x− a.

Remark:

1. Note the analogy with the equation of a tangent line of the graph of a single
variable function:

y = f(a) + f ′(a)(x− a).

Thus, the gradient ∇f(x) plays a role analogous to the derivative.

2. The above remarks generalise to scalar-valed functions f : X ⊆ Rn → R, where
we define the gradient of f at a to be the 1× n row vector

∇f(a) =
[
fx1(a) fx2(a) · · · fxn(a)

]
Differentiability of vector-valued functions

Suppose that f : X ⊂ Rn → Rm is a vector-valued function, f(x) = (f1(x), . . . , fm(x)),
with each f1, . . . , fm : X ⊆ Rn → R a scalar-valued function.



Goal: we want to define what it means for f(x) to be
differentiable at a point.

Define the matrix of partial derivatives of f at a ∈ X, or the Jacobian matrix
of f at a, to be the m× n matrix Df(a) having ith row ∇fi(a):

Df(a) =


∂f1
∂x1

(a) ∂f1
∂x2

(a) · · · ∂f1
∂xn

(a)
∂f2
∂x1

(a) ∂f2
∂x2

(a) · · · ∂f2
∂xn

(a)
...

...
. . .

...
∂fm
∂x1

(a) ∂fm
∂x2

(a) · · · ∂fm
∂xn

(a)


We write Df(x), or simply Df , for the m × n matrix whose ij-entry is ∂fi

∂xj
(x), and

call it the Jacobian of f .

Remark: If f(x) is a scalar-valued function then Df(x) = ∇f(x); if r(t) is a path
in Rn then Dr(t) = r′(t) computes the velocity vector of r(t).

Define the linearisation of f at a ∈ X to be the function

L(x) = f(a) + Df(a)(x− a), x ∈ Rn

The product here is multiplication of the m× n matrix with the n× 1 matrix x− a.
In particular, L(x) ∈ Rm.

Example: Consider the function

f : R2 → R3 , (x, y) 7→ (x2 + y, 2xy, x + y2)

Then,

Df(x) =

2x 1
2y 2x
1 2y


Differentiability of f(x)

Let f : X ⊆ Rn → Rm be a vector-valued function. We say that f is
differentiable at a ∈ X if all partial derivatives fxi

(a) exist and if

lim
x→a

f(x)− L(x)

|x− a|
= 0

If f is differentiable for every a ∈ X then we say that f is differentiable.

There are analogous results as for the two variable case.

Sufficient Condition for differentiability

Let f : X ⊆ Rn → Rm, a ∈ X. If all partial derivatives fxi
(x) are continuous

nearby to a then f is differentiable at a.



Necessary Condition for differentiability

Let f : X ⊆ Rn → Rm, a ∈ X. If f is differentiable at a then f is continuous
at a.

Moreover, we can reduce differentiability of vector-valued functions to the differen-
tiability of its component functions

Let f : X ⊆ Rn → Rm, f(x) = (f1(x), . . . fm(x)), a ∈ X. If f1, . . . , fm are
differentiable at a then f is differentiable at a.

What is the derivative?
Observe the similarity between the linearisation of f at a

L(x) = f(a) + Df(a)(x− a)

and function whose graph is the tangent line of a single variable function f(x):

L(x) = f(a) + f ′(a)(x− a)

Define the ‘multiplication by Df(a)’ linear map

TDf(a) : Rn → Rm , x 7→ Df(a)x

then the linear map TDf(a) plays the role of the derivative.

The derivative of a vector-valued function f of several variables is
the linear map defined by the Jacobian of f .

Remark: Identifying a linear map with its standard matrix, we will also say that
Df(a) is the derivative of f(x) at x = a.

The Chain Rule
Recall the Chain Rule for functions of a single variable x: let f(x), g(x) be differen-
tiable functions defined at x = a. Then,

(f ◦ g)′(a) = f ′(g(a))g′(a) (∗)

In words: the derivative of a composition is an appropriate product of
derivatives.

If f = Y ⊂ Rm → Rp, g : X ⊂ Rn → Rm are functions of several variables for which
the composition f ◦g makes sense (i.e. g(u) ⊂ Y , for any u ∈ X) then it’s reasonable
to expect the following analog of (∗):

D(f ◦ g)(a) = Df(g(a))Dg(a) (∗∗)

This is the Chain Rule for functions of several variables.

Remark:



1. The product on the right-hand side of (∗∗) is the product of the p×m matrix
Df(g(a)) with the m× n matrix Dg(a).

2. To prove the Chain Rule you need to show an equality of matrices: this
means you must show that the ij entry on the LHS equals the ij entry on
the RHS. The ij entry on the LHS is ∂(fi◦g)

∂uj
(a) and the ij entry on the RHS

is ∇fi(g(a))(Dg(a))j, where (Dg(a))j is the jth column of Dg(a). That these
two quantities are equal now follows from the Chain Rule for single variable
functions and the definition of partial derivatives.

Example:

1. Let f(x, y) = x2 + 3y2, r(t) = (2t, t2). Then,

f ◦ r : R→ R , t 7→ (2t)2 + 3(t2)2 = 4t2 + 3t4

In this case, D(f ◦ r)(t) is precisely the derivative (f ◦ r)′(t) = 8t + 12t3.

Let’s compute the right-hand side of the Chain Rule: we have

Dr(t) = r′(t) =

[
2
2t

]
Df(x) = ∇f(x) =

[
2x 6y

]
=⇒ Df(r(t)) =

[
4t 6t2

]
Hence,

Df(r(t))Dr(t) =
[
4t 6t2

] [ 2
2t

]
= 8t + 12t3

2. Let h(x, y, z) = x + yz and

f : R2 → R3 , (x, y) 7→ (x2 + y, 2xy, x + y2)

Then,

(h ◦ f)(x, y, z) = h(x2 + y, 2xy, x + y2)

= (x2 + y) + (2xy)(x + y2)

= x2 + y + 2x2y + 2xy3

Hence,

D(h ◦ f)(x) = ∇(h ◦ f)(x) =
[
2x + 4xy + 2y3 1 + 2x2 + 6xy2

]
Computing the right-hand side of (∗∗):

Dh(x) = ∇h(x)) =
[
1 z y

]
=⇒ Dh(f(x)) =

[
1 x + y2 2xy

]
and

Df(x) =

2x 1
2y 2x
1 2y


Then,

Dh(f(x))Df(x) =
[
1 x + y2 2xy

] 2x 1
2y 2x
1 2y

 =
[
2x + 4xy + 2y3 1 + 2x2 + 6xy2

]



3. Let
f : R2 → R3 , (x, y) 7→ (x2 + y, 2xy, x + y2)

g : R3 → R2 , (u, v, w) 7→ (u2 + v, 3w − u)

Then,

f ◦ g(u) = ((u2 + v)2 + 3w − u, 2(u2 + v)(3w − u), u2 + v + (3w − u)2)

and

D(f ◦ g)(u) =

 4u3 + 4uv − 1 2u2 + 2v 3
12uw − 6u2 − 2v 6w − 2u 6v + 6u2

4u− 6w 1 18w − 6u


Computing the righ-hand side of (∗∗):

Df(x) =

2x 1
2y 2x
1 2y

 =⇒ Df(g(u)) =

 2(u2 + v) 1
2(3w − u) 2(u2 + v)

1 2(3w − u)


and Dg(u) =

[
2u 1 0
−1 0 3

]
Hence,

Df(g(u))Dg(u) =

 2(u2 + v) 1
2(3w − u) 2(u2 + v)

1 2(3w − u)

[2u 1 0
−1 0 3

]

=

 4u3 + 4uv − 1 2u2 + 2v 3
12uw − 6u2 − 2v 6w − 2u 6v + 6u2

4u− 6w 1 18w − 6u




