April 27 Lecture

Textbook Reference:

- Vector Calculus, Colley, 4th Edition: §4.1, 4.2

The Second Derivative Test; The Hessian

Learning Objectives:

- Learn how to use the Second Derivative Test.
- Learn what the Hessian matrix is.

Keywords: Second Derivative Test, Hessian matrix

The Second Derivative Test

Let $f: X \subset \mathbb{R}^{2}$ be a differentiable function with continuous (mixed) second order partial derivatives, $\underline{a}=(a, b) \in X$. In the last lecture we introduced the second order Taylor polynomial of f near \underline{a}

$$
\begin{gathered}
p_{2}(x, y)=f(a, b)+f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)+\frac{1}{2} f_{x x}(a, b)(x-a)^{2} \\
+f_{x y}(a, b)(x-a)(y-b)+\frac{1}{2} f_{y y}(a, b)(y-b)^{2}
\end{gathered}
$$

The second order Taylor polynomial $p_{2}(x, y)$ is a good approximation of $f(x, y)$ near \underline{a} in the following sense:

$$
\begin{equation*}
\lim _{\underline{x} \rightarrow \underline{a}} \frac{f(\underline{x})-p_{2}(\underline{x})}{|\underline{x}-\underline{a}|^{2}}=0 \tag{*}
\end{equation*}
$$

Suppose that $\underline{a}=(0,0) \in X$ is a critical point, so that $\nabla f(0,0)=\left[\begin{array}{ll}0 & 0\end{array}\right]$ (this is not a restrictive assumption on $f(x, y)$ - we could always ensure this to be the case once we perform a translation change-of-coordinates). Then,

$$
p_{2}(x, y)=\frac{1}{2}\left(f_{x x}(0,0) x^{2}+2 f_{x y}(0,0) x y+f_{y y}(0,0) y^{2}\right)
$$

Write

$$
\alpha=\frac{\partial^{2} f}{\partial x^{2}}(0,0), \quad \beta=\frac{\partial^{2} f}{\partial x \partial y}(0,0), \quad \gamma=\frac{\partial^{2} f}{\partial y^{2}}
$$

so that

$$
p_{2}(x, y)=\frac{1}{2}\left(\alpha x^{2}+2 \beta x y+\gamma y^{2}\right)
$$

Assume $\alpha \neq 0$ (this need not hold, in general) and $f(0,0)=0$ (this may be assumed without loss of generality). Then, upon completing the square we find

$$
\begin{aligned}
p_{2}(x, y) & =\frac{1}{2}\left(\alpha x^{2}+2 \beta x y+\gamma y^{2}\right) \\
& =\alpha\left(x+\frac{\beta y}{\alpha}\right)^{2}+y^{2}\left(\frac{\alpha \gamma-\beta^{2}}{\alpha}\right)
\end{aligned}
$$

$$
\alpha, \delta>0
$$

$$
\alpha, \delta<0
$$

Define $\delta=\frac{\alpha \gamma-\beta^{2}}{\alpha}$ and assume $\delta \neq 0$. We have the following cases for what the graph $z=p_{2}(x, y)$ looks like near $(0,0)$:

$$
\alpha>0, \delta<0 \quad \text { or } \quad \alpha<0, \delta>0
$$

Remark:

1. If we make the linear change of coordinates $\bar{x}=x+\frac{\beta y}{2 \alpha}$ then

$$
p_{2}(\bar{x}, y)=\alpha \bar{x}^{2}+\delta y^{2}
$$

2. If $\alpha=0$ then we complete the square with respect to y, obtaining:

$$
p_{2}(x, y)=\gamma\left(y+\frac{\beta}{\gamma} x\right)^{2}-\frac{\beta^{2}}{\gamma} y^{2}
$$

In particular, whenever $\alpha=0$ and $\beta \neq 0$ the graph $z=p_{2}(x, y)$ near $(0,0)$ looks like a saddle.

Now, $(*)$ implies that, for (x, y) close to $(0,0)$,

$$
\begin{gathered}
f(x, y)-f(0,0) \approx p_{2}(\underline{x})-f(0,0)=\frac{1}{2}\left(\alpha x^{2}+2 \beta x y+\gamma y^{2}\right) \\
\Longrightarrow f(x, y)-f(0,0) \approx \frac{1}{2}\left(\alpha\left(x+\frac{\beta y}{\alpha}\right)^{2}+\delta y^{2}\right)
\end{gathered}
$$

Hence, for (x, y) near the critical point $(0,0)$, we have the following characterisation of the nature of the critical point:

Derivative info.	Nature of crit. pt.
$\alpha, \delta>0$	local min.
$\alpha, \delta<0$	local max.
$\alpha<0, \delta>0$ or $\alpha>0, \delta<0$	saddle
$\alpha=0, \beta \neq 0$	saddle

We've just exhibited the following second derivative test for determining the nature of a critical point of $f(x, y)$:

Second Derivative Test:

Let $f: X \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a differentiable function with continuous second order partial derivatives. Let $\underline{a}=(a, b)$ be a critical point of f. Define

$$
\begin{gathered}
\alpha=\frac{\partial^{2} f}{\partial x^{2}}(a, b) \quad \beta=\frac{\partial^{2} f}{\partial x \partial y}(a, b), \quad \gamma=\frac{\partial^{2} f}{\partial y^{2}}(a, b) \\
\alpha=0, \beta \neq 0 \quad \longleftrightarrow \quad \text { saddle }
\end{gathered}
$$

Define

$$
\delta=\frac{\alpha \gamma-\beta^{2}}{\alpha}
$$

If $\delta \neq 0$ then

$$
\begin{aligned}
& \alpha, \delta>0 \longleftrightarrow \text { local min. } \\
& \alpha, \delta<0 \longleftrightarrow \text { local max. } \\
& \alpha<0, \delta>0 \text { or } \alpha>0, \delta<0 \longleftrightarrow \\
& \text { saddle }
\end{aligned}
$$

If $\alpha \gamma-\beta^{2}=0$ then we say \underline{a} is degenerate and we can't deduce the nature of the critical point using the second derivative test.

Example:

1. Consider the function $f(x, y)=x^{2}+2 x+y^{2}$. Then,

$$
\nabla f=\left[\begin{array}{ll}
2 x+2 & 2 y
\end{array}\right]
$$

The critical points are those (x, y) where $\nabla f=\left[\begin{array}{ll}0 & 0\end{array}\right]$

$$
\Longrightarrow 2(x+1)=0 \quad \text { and } \quad 2 y=0
$$

There is a single critical point $(-1,0)$. We compute

$$
\alpha=2, \quad \beta=0, \quad \gamma=2
$$

Then,

$$
\delta=\frac{\alpha \gamma-\beta^{2}}{\alpha}=2
$$

Hence, since $\alpha, \delta>0$ the critical point $(-1,0)$ is a local minimum.
2. Let $f(x, y)=x^{3}-3 x y^{2}$. Let's determine the nature of the critical points. First

$$
\nabla f=\left[\begin{array}{ll}
3 x^{2}-3 y^{2} & -6 x y
\end{array}\right]
$$

Then, critical points are those (x, y) satisfying

$$
3 x^{2}-3 y^{2}=0 \quad \text { and } \quad 6 x y=0
$$

The second equation gives $x=0$ or $y=0$. Substituting $x=0$ into the first equation gives $y=0$. Substituting $y=0$ into the first equation gives $x=0$. Hence, there is exactly one critical point at $(0,0)$. Then,

$$
\alpha=0, \quad \beta=0, \quad \gamma=0
$$

Since $\alpha \gamma \beta^{2}=0$ the critical point $(0,0)$ is degenerate and we need further analysis to determine its nature.
The graph $z=x^{3}-3 x y^{2}$ is known as the monkey saddle:

3. Let $f(x, y)=x^{2} y-2 x y^{2}+3 x y+4$. Let's determine the nature of the critical points. First, compute

$$
\nabla f=\left[\begin{array}{ll}
2 x y-2 y^{2}+3 y & x^{2}-4 x y+3 x
\end{array}\right]
$$

Thus, the critical points are those (x, y) such that
$0=2 x y-2 y^{2}+3 y=y(2 x-2 y+3), \quad 0=x^{2}-4 x y+3 x=x(x-4 y+3)$
The first equation holds when either $y=0$ or $2 x-2 y+3=0$.

- $y=0$: if $y=0$ then the second equation becomes $0=x(x+3)$. Hence, $(0,0)$ and $(-3,0)$ are critical points.
$-2 x-2 y+3=0$: Then, $x=y-3 / 2$. Substitute this into the second equation to obtain

$$
y-3 / 2=0 \quad \text { or } \quad y-3 / 2-4 y+3=0 \quad \Longrightarrow \quad y=3 / 2 \quad \text { or } \quad y=1 / 2
$$

Hence, $(0,3 / 2)$ and $(-1,1 / 2)$ are critical points. We check the nature of each of these critical points:

- $(0,0)$: we compute

$$
\alpha=0, \quad \beta=3, \quad \gamma=0
$$

Since $\alpha=0, \beta \neq 0$ then $(0,0)$ is a saddle.

- $(-3,0)$: we compute

$$
\alpha=0, \quad \beta=-3, \quad \gamma=12
$$

Since $\alpha=0, \beta \neq 0$ and $(-3,0)$ is a saddle.

- $(0,3 / 2)$: we compute

$$
\alpha=3, \quad \beta=-3, \quad \gamma=0
$$

Then, $\delta=\frac{\alpha \gamma-\beta^{2}}{\alpha}=-3$. Since $\alpha>0, \delta<0$ we have $(0,3 / 2)$ is a saddle.

- $(-1,1 / 2)$: we compute

$$
\alpha=1, \quad \beta=-1, \quad \gamma=-4
$$

Then, $\delta=\frac{\alpha \gamma-\beta^{2}}{\alpha}=-5$. Since $\alpha>0, \delta<0$ we have $(-1,1 / 2)$ is a saddle.

The Hessian

Define the Hessian of $f(x, y)$ at $\underline{a}=(a, b)$ to be the 2×2 matrix

$$
H f(\underline{a})=\left[\begin{array}{ll}
\frac{\partial^{2} f}{\partial x^{2}}(a, b) & \frac{\partial^{2} f}{\partial y \partial x}(a, b) \\
\frac{\partial^{2} f}{\partial x \partial y}(a, b) & \frac{\partial^{2} f}{\partial y^{2}}(a, b)
\end{array}\right]
$$

Using the notation above, and Clairaut's Theorem,

$$
H f(\underline{a})=\left[\begin{array}{ll}
\alpha & \beta \\
\beta & \gamma
\end{array}\right]
$$

Then, the Second Derivative Test can be restated as follows: let $h_{i j}$ be the $i j$-entry of $H=H f(\underline{a})$.

Hessian.	Nature of crit. pt.
$h_{11}, \operatorname{det} H>0$	local min.
$h_{11}<0, \operatorname{det} H>0$	local max.
$\operatorname{det} H<0$	saddle
$\operatorname{det} H=0$	degenerate

The Hessian H appears naturally in the following setting: the second order Taylor polynomial near \underline{a} can be written

$$
p_{2}(\underline{x})=f(\underline{x})+\frac{1}{2}(\underline{x}-\underline{a})^{t} H(\underline{x}-\underline{a})
$$

Remark: The Second Derivative Test can be extended to scalar-valued functions $f: X \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ of n variables. See p. 268 of the textbook.

