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THE SECOND DERIVATIVE TEST; THE HESSIAN

LEARNING OBJECTIVES:
- Learn how to use the Second Derivative Test.
- Learn what the Hessian matrix 1s.
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The Second Derivative Test
Let f : X C R? be a differentiable function with continuous (mixed) second order
partial derivatives, a = (a,b) € X. In the last lecture we introduced the second
order Taylor polynomial of f near a
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The second order Taylor polynomial ps(z,y) is a good approximation of f(z,y) near
a in the following sense:
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Suppose that a = (0,0) € X is a critical point, so that Vf(0,0) = [O O] (this is not
a restrictive assumption on f(x,y) - we could always ensure this to be the case once
we perform a translation change-of-coordinates). Then,

pg(x, y) = % (fxm(o’ 0)172 + 2f$y(0, O)xy + fyy(oa 0)92)

Write o f
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0*f
= 8x—ay(0’0)’ "= 5
so that
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Assume « # 0 (this need not hold, in general) and f(0,0) = 0 (this may be assumed
without loss of generality). Then, upon completing the square we find
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a,0 >0 a,0 <0

Define 6 = O”T*BQ and assume ¢ # 0. We have the following cases for what the graph
z = pa(z,y) looks like near (0,0):

a>0,0<0 or a<0,6>0

Remark:

1. If we make the linear change of coordinates * = x + g—i’ then
pa(T,y) = aT® + by’

2. If @« = 0 then we complete the square with respect to y, obtaining:

B\ _ B
pa(z,y) = (y +ow) ——y’
v v
In particular, whenever « = 0 and 8 # 0 the graph z = ps(z,y) near (0,0)

looks like a saddle.

Now, (*) implies that, for (z,y) close to (0,0),

f(z,y) — £(0,0) = pa(z) — f(0,0) = (ax2 + 2Bxy + ’ny)

1
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Hence, for (z,y) near the critical point (0,0), we have the following characterisation
of the nature of the critical point:



Derivative info. | Nature of crit. pt.
a,0 >0 | local min.
a,0 < 0 | local max.
a<0,0>0o0ra>0,0<0 | saddle
a=0,5+#0 | saddle

We've just exhibited the following second derivative test for determining the
nature of a critical point of f(z,y):

Second Derivative Test:

Let f: X C R? — R be a differentiable function with continuous second
order partial derivatives. Let a = (a,b) be a critical point of f. Define

O f

a = ﬁ(% b) 5 an

B 0xdy

(avb)> v = a_yg(avb)

a=0,8#0 <«— saddle

Define
s =8
«Q

If § # 0 then

a,0 >0 <+— local min.
a,0 <0 <— local max.

a<0,0>00ora>0,0<0 <+— saddle

If ay — 3% = 0 then we say a is degenerate and we can’t deduce the nature
of the critical point using the second derivative test.

Example:

1. Consider the function f(x,y) = 2® + 2z + y*. Then,
Vf= [2:6 +2 Zy}
The critical points are those (x,y) where V f = [O O]
= 2(z+1)=0 and 2y=0

There is a single critical point (—1,0). We compute

Then,
ay— B _
!

)= 2.

Hence, since «, > 0 the critical point (—1,0) is a local minimum.



2. Let f(z,y) = 2® — 3zy®. Let’s determine the nature of the critical points. First
Vf=[322-3y* —6ay]
Then, critical points are those (x,y) satisfying
322 —3y° =0 and 6zy =0

The second equation gives z = 0 or y = 0. Substituting x = 0 into the first
equation gives y = 0. Substituting y = 0 into the first equation gives = = 0.
Hence, there is exactly one critical point at (0,0). Then,

a=0, =0, v=0

Since ay3* = 0 the critical point (0,0) is degenerate and we need further
analysis to determine its nature.

The graph z = 23 — 3292 is known as the monkey saddle:

3. Let f(z,y) = 2%y — 2zy® + 3wy + 4. Let’s determine the nature of the critical
points. First, compute

Vf= [2xy—2y2+3y z2—43:y+3x}
Thus, the critical points are those (z,y) such that
0 =2zy — 2y° 4+ 3y = y(2x — 2y + 3), 0 =2%— 4oy + 3z = x(x — 4y + 3)

The first equation holds when either y = 0 or 2x — 2y + 3 = 0.

e y = 0: if y = 0 then the second equation becomes 0 = x(z + 3). Hence, (0,0)
and (—3,0) are critical points.

e 2x —2y+3 = 0: Then, z = y — 3/2. Substitute this into the second equation
to obtain

y—3/2=0 or y—3/2—4y+3=0 = y=3/2 or y=1/2

Hence, (0,3/2) and (—1,1/2) are critical points. We check the nature of each
of these critical points:



e (0,0): we compute

a=0, =3 ~v=0

Since aw = 0, 8 # 0 then (0,0) is a saddle.
e (—3,0): we compute

a=0, pf=-3, =12
Since @ =0, 5 # 0 and (—3,0) is a saddle.
e (0,3/2): we compute

a=3, p=-3, 7=0
Then, § = ch—ﬁQ = —3. Since a > 0, § < 0 we have (0,3/2) is a saddle.
e (—1,1/2): we compute

a=1, p=-1, yv=-4
Then, § = ‘”T_BQ = —5. Since o > 0, 6 < 0 we have (—1,1/2) is a saddle.

The Hessian
Define the Hessian of f(z,y) at a = (a,b) to be the 2 x 2 matrix

2f 02f
Hf(a) = [ A b>]

oxdy (CL, b) %(aa b)

Using the notation above, and Clairaut’s Theorem,

a B
Hf(a) =
=57
Then, the Second Derivative Test can be restated as follows: let h;; be the ij-entry
of H=Hf(a).

Hessian. | Nature of crit. pt.
hi1,det H > 0 | local min.
hi1 < 0,det H > 0 | local max.
det H < 0 | saddle
det H = 0 | degenerate

The Hessian H appears naturally in the following setting: the second order Taylor
polynomial near a can be written

1%@=ﬂ@+%@—@m@—@

Remark: The Second Derivative Test can be extended to scalar-valued functions
f: X CR"” — R of n variables. See p. 268 of the textbook.



