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The Second Derivative Test
Let f : X ⊂ R2 be a differentiable function with continuous (mixed) second order
partial derivatives, a = (a, b) ∈ X. In the last lecture we introduced the second
order Taylor polynomial of f near a

p2(x, y) = f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b) +
1

2
fxx(a, b)(x− a)2

+fxy(a, b)(x− a)(y − b) +
1

2
fyy(a, b)(y − b)2

The second order Taylor polynomial p2(x, y) is a good approximation of f(x, y) near
a in the following sense:

lim
x→a

f(x)− p2(x)

|x− a|2
= 0 (∗)

Suppose that a = (0, 0) ∈ X is a critical point, so that ∇f(0, 0) =
[
0 0

]
(this is not

a restrictive assumption on f(x, y) - we could always ensure this to be the case once
we perform a translation change-of-coordinates). Then,

p2(x, y) =
1

2

(
fxx(0, 0)x2 + 2fxy(0, 0)xy + fyy(0, 0)y2

)
Write

α =
∂2f

∂x2
(0, 0), β =

∂2f

∂x∂y
(0, 0), γ =

∂2f

∂y2

so that

p2(x, y) =
1

2

(
αx2 + 2βxy + γy2

)
Assume α 6= 0 (this need not hold, in general) and f(0, 0) = 0 (this may be assumed
without loss of generality). Then, upon completing the square we find

p2(x, y) =
1

2

(
αx2 + 2βxy + γy2

)
= α

(
x+

βy

α

)2

+ y2
(
αγ − β2

α

)
1



α, δ > 0 α, δ < 0

Define δ = αγ−β2

α
and assume δ 6= 0. We have the following cases for what the graph

z = p2(x, y) looks like near (0, 0):

α > 0, δ < 0 or α < 0, δ > 0

Remark:

1. If we make the linear change of coordinates x = x+ βy
2α

then

p2(x, y) = αx2 + δy2

2. If α = 0 then we complete the square with respect to y, obtaining:

p2(x, y) = γ

(
y +

β

γ
x

)2

− β2

γ
y2

In particular, whenever α = 0 and β 6= 0 the graph z = p2(x, y) near (0, 0)
looks like a saddle.

Now, (∗) implies that, for (x, y) close to (0, 0),

f(x, y)− f(0, 0) ≈ p2(x)− f(0, 0) =
1

2

(
αx2 + 2βxy + γy2

)
=⇒ f(x, y)− f(0, 0) ≈ 1

2

(
α

(
x+

βy

α

)2

+ δy2

)
Hence, for (x, y) near the critical point (0, 0), we have the following characterisation
of the nature of the critical point:
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Derivative info. Nature of crit. pt.
α, δ > 0 local min.
α, δ < 0 local max.

α < 0, δ > 0 or α > 0, δ < 0 saddle
α = 0, β 6= 0 saddle

We’ve just exhibited the following second derivative test for determining the
nature of a critical point of f(x, y):

Second Derivative Test:

Let f : X ⊂ R2 → R be a differentiable function with continuous second
order partial derivatives. Let a = (a, b) be a critical point of f . Define

α =
∂2f

∂x2
(a, b) β =

∂2f

∂x∂y
(a, b), γ =

∂2f

∂y2
(a, b)

α = 0, β 6= 0 ←→ saddle

Define

δ =
αγ − β2

α

If δ 6= 0 then

α, δ > 0 ←→ local min.

α, δ < 0 ←→ local max.

α < 0, δ > 0 or α > 0, δ < 0 ←→ saddle

If αγ − β2 = 0 then we say a is degenerate and we can’t deduce the nature
of the critical point using the second derivative test.

Example:

1. Consider the function f(x, y) = x2 + 2x+ y2. Then,

∇f =
[
2x+ 2 2y

]
The critical points are those (x, y) where ∇f =

[
0 0

]
=⇒ 2(x+ 1) = 0 and 2y = 0

There is a single critical point (−1, 0). We compute

α = 2, β = 0, γ = 2

Then,

δ =
αγ − β2

α
= 2.

Hence, since α, δ > 0 the critical point (−1, 0) is a local minimum.
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2. Let f(x, y) = x3−3xy2. Let’s determine the nature of the critical points. First

∇f =
[
3x2 − 3y2 −6xy

]
Then, critical points are those (x, y) satisfying

3x2 − 3y2 = 0 and 6xy = 0

The second equation gives x = 0 or y = 0. Substituting x = 0 into the first
equation gives y = 0. Substituting y = 0 into the first equation gives x = 0.
Hence, there is exactly one critical point at (0, 0). Then,

α = 0, β = 0, γ = 0

Since αγβ2 = 0 the critical point (0, 0) is degenerate and we need further
analysis to determine its nature.

The graph z = x3 − 3xy2 is known as the monkey saddle:

3. Let f(x, y) = x2y − 2xy2 + 3xy + 4. Let’s determine the nature of the critical
points. First, compute

∇f =
[
2xy − 2y2 + 3y x2 − 4xy + 3x

]
Thus, the critical points are those (x, y) such that

0 = 2xy − 2y2 + 3y = y(2x− 2y + 3), 0 = x2 − 4xy + 3x = x(x− 4y + 3)

The first equation holds when either y = 0 or 2x− 2y + 3 = 0.

• y = 0: if y = 0 then the second equation becomes 0 = x(x+ 3). Hence, (0, 0)
and (−3, 0) are critical points.

• 2x− 2y+ 3 = 0: Then, x = y− 3/2. Substitute this into the second equation
to obtain

y − 3/2 = 0 or y − 3/2− 4y + 3 = 0 =⇒ y = 3/2 or y = 1/2

Hence, (0, 3/2) and (−1, 1/2) are critical points. We check the nature of each
of these critical points:
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• (0, 0): we compute
α = 0, β = 3, γ = 0

Since α = 0, β 6= 0 then (0, 0) is a saddle.

• (−3, 0): we compute

α = 0, β = −3, γ = 12

Since α = 0, β 6= 0 and (−3, 0) is a saddle.

• (0, 3/2): we compute

α = 3, β = −3, γ = 0

Then, δ = αγ−β2

α
= −3. Since α > 0, δ < 0 we have (0, 3/2) is a saddle.

• (−1, 1/2): we compute

α = 1, β = −1, γ = −4

Then, δ = αγ−β2

α
= −5. Since α > 0, δ < 0 we have (−1, 1/2) is a saddle.

The Hessian
Define the Hessian of f(x, y) at a = (a, b) to be the 2× 2 matrix

Hf(a) =

[
∂2f
∂x2

(a, b) ∂2f
∂y∂x

(a, b)
∂2f
∂x∂y

(a, b) ∂2f
∂y2

(a, b)

]

Using the notation above, and Clairaut’s Theorem,

Hf(a) =

[
α β
β γ

]
Then, the Second Derivative Test can be restated as follows: let hij be the ij-entry
of H = Hf(a).

Hessian. Nature of crit. pt.
h11, detH > 0 local min.

h11 < 0, detH > 0 local max.
detH < 0 saddle
detH = 0 degenerate

The Hessian H appears naturally in the following setting: the second order Taylor
polynomial near a can be written

p2(x) = f(x) +
1

2
(x− a)tH(x− a)

Remark: The Second Derivative Test can be extended to scalar-valued functions
f : X ⊂ Rn → R of n variables. See p. 268 of the textbook.
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