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EXTREMA FOR SEVERAL VARIABLE FUNCTIONS
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Maxima & Minima

For the next few lectures we will see how (partial) derivatives of functions of several
variables f can be used to determine properties of f.

Let f: X C R™ — R be a scalar-valued function.
e We say that a € X is a local minimum if there exists r > 0 such that
fla) < f(z) whenever [z —ga] <.
o We say that g is a local maximum if there exists 7 > 0 such that
f(z) < f(a) whenever |z —ga| < 7.
Example: Let f(z,y) = 2 + y2. Then, (0,0) is a local minimum: take r = 1

(for example) then, for any z = (z,7) such that lz] = /722 + 12 < 1 we have
f(xiy)=m2+y2 20=f(0,0).

Remark: As we will soon see, this example is indicative of the behaviour of a
function near a local minimum. .

Suppose that ¢ = (a,b) € R? is a local maximum of the differentiable function
f(z,y). Then, for h € R sufficiently small, we have

f(a+hab) "f(a',b) <0.
In particular, if A > 0 is sufficiently small then

of
= —a;(a, b) <0

Meanwhile, if h < 0 is sufficiently small then
fothd)=fe) , |

of
= —a;(a, b) 2 0

Hence, ‘—gﬁ(a, b) = 0. A similar argument shows that %g(a, b) =0.
_Remark: ' :



1. Proceeding as above, we can show that if @ is a local minimum of f then
=% =0

2. An analogous result holds more generally:

Multivariable Fermat’s Theorem

Suppose that f : X C R® — R is differentiable. If g is a
local maximum/minimum of f then Vf(a) = 0.

A point g € X such that Vf(a) = 0, or f is not differentiable at & is called a critical
point of f.

We have an approach to determining local maxima/minima of a function b
e Determine the critical points of f;
o Check whether the critical points just found are local maxima/minima.

Consider the following level curve diagram of

f(z,y) = cos(z) cos(y),

Exercise: Using the level curve diagram

e indicate all the local maxima/minima (there are nine points altogether);

» find a critical point that is not a local maximum/minimum (there are four . -

critical points that are not-local max/min).
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How would we determine these points without the level curve diagram?
First we determine the critical points of f(z,y) = cos(z) cos(y) - these are those
points (a,b) in the domain of f satisfying

[0 0] =Vf(a,b) = [—sin(a) cos(b) — cos(a) sin(b)]
== sin(a) cos(b) = 0 = cos(a) sin(b)

= (a,0) = (rn/2,s7/2), r,s€{-2 -1,0, 1,2}

(Recall that the domain of f is {(z,y) | —4 < z,y < 4})
For each of these critical points we check if they are local maximum/minimums. For

example, if (a,b) = (0,0) let’s check how f(z,y) changes as we move away from
(0,0): for h, k sufficiently small and nonzero

f(h, k) — £(0,0) = cos(h) cos(k) — cos(0) cos(0) = cos(h) cos(k) —1 < 0

Hence, (0,0) is a local maximum. Using the double angle formula cos(A+ B) =
cos(A) cos(B) F sin(A) sin(B), a similar computation shows that

local maximum: (0,0), (—m, —7), (==, 7), (m, =), (w, )
local minimum: (#£m,0), (0, %)

What about the critical point (7/2,7/2)? This point is neither a local maximum
nor a local minimum. The level curve diagram indicates this point is not a local
maximum or local minimum. Let’s check how f(z,7) changes as we move away from
(m/2,m/2): for h, k sufficiently small and nonzero

f(@/2+ h,m/2+ k) — f(r/2,7/2) = cos(m/2 + h) cos(/2 + k) — cos(/2) cos(m/2)

= sin(h) sin(k)

In particular:

4 (<0, fh>0k<0orh<0k>0
2+ hy/2 4+ k) — f(n/2,7/2 ) ’ ’
T2+ hom/2 4 k) = £/ 7r/){>o, if h,k > 0 or b,k <0

Near to the critical point (r/2,7/2), f (z,y) is both strictly increasing and
strictly decreasing.

Question:

Is there a methodical way to determine whether a critical point is a local
maximum/minimum /neither of a differentiable function f?

Taylor’s Theorem: Second Order Formula
Let f(z,y) be a function with continuous second partial (mixed) derivatives having
domain X C R2 We've already seen a first order approximation to f(z,y) near to
(a,b) € X: this is the linearisation L(z,y) of f(z,y) near to (a,b)

L(z,y) = £(a,) + fo(a,b)(z — a) + fy(a,b)(y — b)

.If (a,b) is a critical point of f(z,y), so that V f(a,b) = 0%, then L(z,y) = f(a, b) is
a constant function. A natural question is the following:
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Question:

Is there a degree two polynomial function

pa(2,y) = a + B(z — a) + ¥(y — b) + 6(z — a) + &(z — a)(y — b) + n(y — b)?

that ‘closely approximates’ f(z,y) near to (a, b)?

Suppose that such a polynomial function existed. Then, it would seem reasonable
to expect

p2(a,b) = a
0 0
'b%aab)zﬂ7 55(&,6)=’7
o2%f _ 8% f _ 0% f _
51_:2_(0" b) - 261 b_mgy'(a’ b) = 26: 5172'(0'1 b) - 277

In fact, it’s possible to show that such a polynomial does exist, in general:

Taylor’s Theorem: Second Order Formula

Let f: X CR™ — R have continuous second order partial derivatives,
a=(a,--.,a,) € X. Then, there exists a degree two polynomial po(z),
called the second order Taylor polynomial of f (z,y) near a, such that

tim @) —p2@)| _
zve |z —af?

Moreover,

pale) = @)+ 30 5L @E ~ 00+ 5 3 5o Lo - adas ) (9

=1

Remark:

1. For a function f(z,y) of two variables

P2(2,9) = £(2,0) + £o(0,5)( = 0) + £y(@, D)y ~ 8) +  fua(e, ) — 0)?

+a(@,5)( = 0)(y — ) + 5y @, D)(y — b

2. (*) can be written in the compact form

Pa(2) = £(0) + Vi(@2 - 0) + >z - ) HF(@)(z - a)

where H f(a) is an n x n symmetric matrix called the Hessian of f. We will
introduce the Hessian in the next lecture. For n = 2, the Hessian is

2
24t ZL(a, b)J

H .,b = | & 2
fle.?) [%éj;(a,b) )
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Example:
1. Consider f(z,y) = cos(z) cos(y), (a,b) = (0,0). Then,
F0.0)=1, f2(0,0) = £,(0,0) =0, fuz(0,0) = £,4(0,0) = =1, £,,(0,0) =0
Hence, the second order Taylor polynomial of f (z,y) near (0,0)

(0,©)
Pz(x)=1——;—x2—%y2 &— Pz(:\ ’f ’Ltj

2. Consider the function f(z,y) = z® + 32y + 3. Then, =D e h’q (0.0}
'F (_’K—! ’) WS i
f(1,1) =5, §i(l, 1)=6= (1 1), 3 Lile
oz A — oo
SR oo S\
32 f o? f 8? f a2 f po

Hence, the second order Taylor polynomlal near to (1, 1) is
Pa(2,y) =5+6(x = 1)+ 6(y — 1)+ 3(z — 1)+ 3(z — 1)(y — 1) + 3(y — 1)’

Next time: We will see how to use the second order Taylor polynomial to determine
the nature of a critical point.



