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EXTREMA FOR SEVERAL VARIABLE FUNCTIONS

LEARNING OBJECTIVES:
- Learn the definition of local maximum, local minimum, critical point.
- Learn the statement of Taylor’s Second Order Formula.
- Learn how to compute the second order Taylor polynomial.
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Maxima & Minima
For the next few lectures we will see how (partial) derivatives of functions of several
variables f can be used to determine properties of f.

Let f: X C R® — R be a scalar-valued function.

e We say that ¢ € X is a local minimum if there exists » > 0 such that

f(a) < f(z) whenever |z —a| <.

e We say that a is a local maximum if there exists » > 0 such that

f(z) < f(a) whenever [z —a| <.

Example: Let f(z,y) = 2? + y*>. Then, (0,0) is a local minimum: take r = 1
(for example) then, for any x = (z,y) such that |z| = /22 +y? < 1 we have
flzy) =2 +y* > 0= £(0,0).
Remark: As we will soon see, this example is indicative of the behaviour of a
function near a local minimum.

Suppose that a = (a,b) € R? is a local maximum of the differentiable function
f(z,y). Then, for h € R sufficiently small, we have

f(a+h7b> _f(aab) <0.
In particular, if h > 0 is sufficiently small then

fla+h,b) — f(a,b)
h
Meanwhile, if h < 0 is sufficiently small then

of
< — <
<0 = e (a,b) <0

f(a—l—h,b)—f(a,b) af
> — >
. >0 = e (a,b) >0
Hence, %(a, b) = 0. A similar argument shows that g—;(a, b) = 0.
Remark:



1. Proceeding as above, we can show that if a is a local minimum of f then
Y =Yw=o.
Y

2. An analogous result holds more generally:

Multivariable Fermat’s Theorem

Suppose that f: X C R" — R is differentiable. If a is a
local maximum/minimum of f then V f(a) = 0.

A point a € X such that Vf(a) = 0, or f is not differentiable at a is called a critical
point of f.

We have an approach to determining local maxima/minima of a function f:

e Determine the critical points of f;

e Check whether the critical points just found are local maxima/minima.

Consider the following level curve diagram of

f(z,y) = cos(x) cos(y),

Exercise: Using the level curve diagram

e indicate all the local maxima/minima (there are nine points altogether);

e find a critical point that is not a local maximum/minimum (there are four
critical points that are not local max/min).
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How would we determine these points without the level curve diagram?
First we determine the critical points of f(z,y) = cos(z)cos(y) - these are those
points (a,b) in the domain of f satisfying

[0 0] =Vf(a,b) = [—sin(a)cos(b) — cos(a)sin(b)]

= sin(a)cos(b) = 0 = cos(a) sin(b)
= (a,b) = (rm/2,sm/2), r,s€{-2,—1,0,1,2}

(Recall that the domain of f is {(z,y) | —4 <x,y <4})

For each of these critical points we check if they are local maximum /minimums. For
example, if (a,b) = (0,0) let’s check how f(x,y) changes as we move away from
(0,0): for h, k sufficiently small and nonzero

f(h,k) — f(0,0) = cos(h) cos(k) — cos(0) cos(0) = cos(h) cos(k) —1 < 0

Hence, (0,0) is a local maximum. Using the double angle formula cos(A £ B) =
cos(A) cos(B) F sin(A) sin(B), a similar computation shows that

local maximum: (0,0), (—m, —7), (=7, 7), (7, —7), (7, )
local minimum: (£7,0), (0, £7)

What about the critical point (7/2,7/2)7 This point is neither a local maximum
nor a local minimum. The level curve diagram indicates this point is not a local
maximum or local minimum. Let’s check how f(z,y) changes as we move away from
(w/2,7/2): for h, k sufficiently small and nonzero

f(m/2+h,7/24+k)— f(r/2,7/2) = cos(w/2 4+ h)cos(m/2 + k) — cos(m/2) cos(m/2)
= sin(h) sin(k)
In particular:

<0, ifh>0,k<0orh<0,k>0

f(”/2+h77r/2+k)_f(ﬁ/z’ﬁ/%{>0 if h,k>0or h,k<0

Near to the critical point (7/2,7/2), f(z,y) is both strictly increasing and
strictly decreasing.

Question:

Is there a methodical way to determine whether a critical point is a local
maximum/minimum /neither of a differentiable function f7

Taylor’s Theorem: Second Order Formula
Let f(z,y) be a function with continuous second partial (mixed) derivatives having
domain X C R2% We've already seen a first order approximation to f(z,y) near to
(a,b) € X: this is the linearisation L(xz,y) of f(z,y) near to (a,b)
L(z,y) = f(a,0) + fe(a,b)(z — a) + fy(a, b)(y = b)

If (a,b) is a critical point of f(x,y), so that Vf(a,b) = 0, then L(z,y) = f(a,b) is
a constant function. A natural question is the following:
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Question:

Is there a degree two polynomial function

pa(a,y) = a+ Bz —a) +y(y — b) + 6(x — a)® + e(z — a)(y — b) + n(y — b)*

that ‘closely approximates’ f(x,y) near to (a,b)?

Suppose that such a polynomial function existed. Then, it would seem reasonable
to expect

p2(a7 b) =
Opa _ of _
%(G,b)—ﬂ, ay(a7b)_’7
0% f B 0% f B 0 f B
e 5 (a,b) = 24, 8w6y(a’b> = 2¢, o —5(a,b) =2n

In fact, it’s possible to show that such a polynomial does exist, in general:

Taylor’s Theorem: Second Order Formula

Let f: X C R®” — R have continuous second order partial derivatives,
a=(ay,...,a,) € X. Then, there exists a degree two polynomial py(z),
called the second order Taylor polynomial of f(z,y) near a, such that

@ -]

m—)a ‘g - QP
Moreover,
1 <~ 0*f
+ Z 8:;51 ) * 5 i,j=1 33%813 (Q)(xz - ai)(ﬁj - aj) (*>
Remark:

1. For a function f(x,y) of two variables

po(,y) = (0 8) + Fol D) — @) + fyfa,6)(y ) + 3 fuela, D)z — a)?

ey, D)(& — @)y = ) + 3 fofa, D)y — )

2. (*) can be written in the compact form

po(e) = fla) + V(a)(z ~ ) + 5(z — 0) Hf(@)z — a)

where H f(a) is an n X n symmetric matrix called the Hessian of f. We will
introduce the Hessian in the next lecture. For n = 2, the Hessian is

a 82f a
Hi(ah) = [ ey g ’ff]

8x8y
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Example:

1. Consider f(x,y) = cos(z) cos(y), (a,b) = (0,0). Then,

f(0,0)=1, f.(0,0) = £,(0,0) =0, f..(0,0) = f,,(0,0) = —1,

Hence, the second order Taylor polynomial of f(x,y) near (0,0)

2. Consider the function f(z,y) = 23 + 3zy + 3*. Then,

_s Uy
fL) =5 50,1)=6="7(1)

0 f . 0*f 02 f
@(1’ 1)=6= (9_y2(17 b, Oxdy - Oyox

Hence, the second order Taylor polynomial near to (1,1) is

9% f

f24(0,0) =0

(1,1) = (1,1) =3

po(2,y) =5+6(x—1)+6(y—1)+3(x—1)>+3(x—1)(y — 1) +3(y — 1)



