April 23 Lecture

Textbook Reference:

- Vector Calculus, Colley, 4th Edition: §4.1, 4.2

Extrema for Several Variable Functions

Learning Objectives:

- Learn the definition of local maximum, local minimum, critical point.
- Learn the statement of Taylor's Second Order Formula.
- Learn how to compute the second order Taylor polynomial.

Keywords: local maximum, local minimum, critical point, second order Taylor polynomial

Maxima \& Minima

For the next few lectures we will see how (partial) derivatives of functions of several variables f can be used to determine properties of f.
Let $f: X \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a scalar-valued function.

- We say that $\underline{a} \in X$ is a local minimum if there exists $r>0$ such that

$$
f(\underline{a}) \leq f(\underline{x}) \quad \text { whenever }|\underline{x}-\underline{a}|<r .
$$

- We say that \underline{a} is a local maximum if there exists $r>0$ such that

$$
f(\underline{x}) \leq f(\underline{a}) \quad \text { whenever }|\underline{x}-\underline{a}|<r .
$$

Example: Let $f(x, y)=x^{2}+y^{2}$. Then, $(0,0)$ is a local minimum: take $r=1$ (for example) then, for any $\underline{x}=(x, y)$ such that $|\underline{x}|=\sqrt{x^{2}+y^{2}}<1$ we have $f(x, y)=x^{2}+y^{2} \geq 0=f(0,0)$.
Remark: As we will soon see, this example is indicative of the behaviour of a function near a local minimum.
Suppose that $\underline{a}=(a, b) \in \mathbb{R}^{2}$ is a local maximum of the differentiable function $f(x, y)$. Then, for $h \in \mathbb{R}$ sufficiently small, we have

$$
f(a+h, b)-f(a, b) \leq 0
$$

In particular, if $h>0$ is sufficiently small then

$$
\frac{f(a+h, b)-f(a, b)}{h} \leq 0 \quad \Longrightarrow \quad \frac{\partial f}{\partial x}(a, b) \leq 0
$$

Meanwhile, if $h<0$ is sufficiently small then

$$
\frac{f(a+h, b)-f(a, b)}{h} \geq 0 \quad \Longrightarrow \quad \frac{\partial f}{\partial x}(a, b) \geq 0
$$

Hence, $\frac{\partial f}{\partial x}(a, b)=0$. A similar argument shows that $\frac{\partial f}{\partial y}(a, b)=0$.

Remark:

1. Proceeding as above, we can show that if \underline{a} is a local minimum of f then $\frac{\partial f}{\partial x}(\underline{a})=\frac{\partial f}{\partial y}(\underline{a})=0$.
2. An analogous result holds more generally:

Multivariable Fermat's Theorem

Suppose that $f: X \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ is differentiable. If \underline{a} is a local maximum/minimum of f then $\nabla f(\underline{a})=\underline{0}$.

A point $\underline{a} \in X$ such that $\nabla f(\underline{a})=\underline{0}$, or f is not differentiable at \underline{a} is called a critical point of f.
We have an approach to determining local maxima/minima of a function f :

- Determine the critical points of f;
- Check whether the critical points just found are local maxima/minima.

Consider the following level curve diagram of

$$
f(x, y)=\cos (x) \cos (y), \quad-4 \leq x, y \leq 4
$$

Exercise: Using the level curve diagram

- indicate all the local maxima/minima (there are nine points altogether);
- find a critical point that is not a local maximum/minimum (there are four critical points that are not local max/min).

How would we determine these points without the level curve diagram? First we determine the critical points of $f(x, y)=\cos (x) \cos (y)$ - these are those points (a, b) in the domain of f satisfying

$$
\begin{aligned}
{\left[\begin{array}{ll}
0 & 0
\end{array}\right] } & =\nabla f(a, b)=[-\sin (a) \cos (b) \quad-\cos (a) \sin (b)] \\
& \Longrightarrow \quad \sin (a) \cos (b)=0=\cos (a) \sin (b) \\
& \Longrightarrow \\
& (a, b)=(r \pi / 2, s \pi / 2), \quad r, s \in\{-2,-1,0,1,2\}
\end{aligned}
$$

(Recall that the domain of f is $\{(x, y) \mid-4 \leq x, y \leq 4\}$)
For each of these critical points we check if they are local maximum/minimums. For example, if $(a, b)=(0,0)$ let's check how $f(x, y)$ changes as we move away from $(0,0)$: for h, k sufficiently small and nonzero

$$
f(h, k)-f(0,0)=\cos (h) \cos (k)-\cos (0) \cos (0)=\cos (h) \cos (k)-1<0
$$

Hence, $(0,0)$ is a local maximum. Using the double angle formula $\cos (A \pm B)=$ $\cos (A) \cos (B) \mp \sin (A) \sin (B)$, a similar computation shows that

$$
\begin{array}{lc}
\text { local maximum: } & (0,0),(-\pi,-\pi),(-\pi, \pi),(\pi,-\pi),(\pi, \pi) \\
\text { local minimum: } & (\pm \pi, 0),(0, \pm \pi)
\end{array}
$$

What about the critical point $(\pi / 2, \pi / 2)$? This point is neither a local maximum nor a local minimum. The level curve diagram indicates this point is not a local maximum or local minimum. Let's check how $f(x, y)$ changes as we move away from $(\pi / 2, \pi / 2)$: for h, k sufficiently small and nonzero

$$
\begin{aligned}
f(\pi / 2+h, \pi / 2+k)-f(\pi / 2, \pi / 2) & =\cos (\pi / 2+h) \cos (\pi / 2+k)-\cos (\pi / 2) \cos (\pi / 2) \\
& =\sin (h) \sin (k)
\end{aligned}
$$

In particular:

$$
f(\pi / 2+h, \pi / 2+k)-f(\pi / 2, \pi / 2) \begin{cases}<0, & \text { if } h>0, k<0 \text { or } h<0, k>0 \\ >0, & \text { if } h, k>0 \text { or } h, k<0\end{cases}
$$

Near to the critical point $(\pi / 2, \pi / 2), f(x, y)$ is both strictly increasing and strictly decreasing.

Question:

Is there a methodical way to determine whether a critical point is a local maximum/minimum/neither of a differentiable function f ?

Taylor's Theorem: Second Order Formula

Let $f(x, y)$ be a function with continuous second partial (mixed) derivatives having domain $X \subset \mathbb{R}^{2}$. We've already seen a first order approximation to $f(x, y)$ near to $(a, b) \in X$: this is the linearisation $L(x, y)$ of $f(x, y)$ near to (a, b)

$$
L(x, y)=f(a, b)+f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)
$$

If (a, b) is a critical point of $f(x, y)$, so that $\nabla f(a, b)=\underline{0}^{t}$, then $L(x, y)=f(a, b)$ is a constant function. A natural question is the following:

Question:

Is there a degree two polynomial function

$$
p_{2}(x, y)=\alpha+\beta(x-a)+\gamma(y-b)+\delta(x-a)^{2}+\epsilon(x-a)(y-b)+\eta(y-b)^{2}
$$

that 'closely approximates' $f(x, y)$ near to (a, b) ?
Suppose that such a polynomial function existed. Then, it would seem reasonable to expect

$$
\begin{gathered}
p_{2}(a, b)=\alpha \\
\frac{\partial p_{2}}{\partial x}(a, b)=\beta, \quad \frac{\partial f}{\partial y}(a, b)=\gamma \\
\frac{\partial^{2} f}{\partial x^{2}}(a, b)=2 \delta, \quad \frac{\partial^{2} f}{\partial x \partial y}(a, b)=2 \epsilon, \quad \frac{\partial^{2} f}{\partial y^{2}}(a, b)=2 \eta
\end{gathered}
$$

In fact, it's possible to show that such a polynomial does exist, in general:

Taylor's Theorem: Second Order Formula

Let $f: X \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ have continuous second order partial derivatives, $\underline{a}=\left(a_{1}, \ldots, a_{n}\right) \in X$. Then, there exists a degree two polynomial $p_{2}(\underline{x})$,
called the second order Taylor polynomial of $f(x, y)$ near \underline{a}, such that

$$
\lim _{\underline{x} \rightarrow \underline{a}} \frac{\left|f(\underline{x})-p_{2}(\underline{x})\right|}{|\underline{x}-\underline{a}|^{2}}=0
$$

Moreover,

$$
\begin{equation*}
p_{2}(\underline{x})=f(\underline{a})+\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}}(\underline{a})\left(x_{i}-a_{i}\right)+\frac{1}{2} \sum_{i, j=1}^{n} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(\underline{a})\left(x_{i}-a_{i}\right)\left(x_{j}-a_{j}\right) \tag{*}
\end{equation*}
$$

Remark:

1. For a function $f(x, y)$ of two variables

$$
\begin{gathered}
p_{2}(x, y)=f(a, b)+f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)+\frac{1}{2} f_{x x}(a, b)(x-a)^{2} \\
+f_{x y}(a, b)(x-a)(y-b)+\frac{1}{2} f_{y y}(a, b)(y-b)^{2}
\end{gathered}
$$

2 . $(*)$ can be written in the compact form

$$
p_{2}(\underline{x})=f(\underline{a})+\nabla f(\underline{a})(\underline{x}-\underline{a})+\frac{1}{2}(\underline{x}-\underline{a})^{t} H f(\underline{a})(\underline{x}-\underline{a})
$$

where $H f(\underline{a})$ is an $n \times n$ symmetric matrix called the Hessian of f. We will introduce the Hessian in the next lecture. For $n=2$, the Hessian is

$$
H f(a, b)=\left[\begin{array}{cc}
\frac{\partial^{2} f}{\partial x^{2}}(a, b) & \frac{\partial^{2} f}{\partial y \partial x}(a, b) \\
\frac{\partial^{2} f}{\partial x \partial y}(a, b) & \frac{\partial^{2} f}{\partial y^{2}}(a, b)
\end{array}\right]
$$

Example:

1. Consider $f(x, y)=\cos (x) \cos (y),(a, b)=(0,0)$. Then,
$f(0,0)=1, \quad f_{x}(0,0)=f_{y}(0,0)=0, \quad f_{x x}(0,0)=f_{y y}(0,0)=-1, \quad f_{x y}(0,0)=0$
Hence, the second order Taylor polynomial of $f(x, y)$ near $(0,0)$

$$
p_{2}(x)=1-\frac{1}{2} x^{2}-\frac{1}{2} y^{2}
$$

2. Consider the function $f(x, y)=x^{3}+3 x y+y^{3}$. Then,

$$
\begin{gathered}
f(1,1)=5, \quad \frac{\partial f}{\partial x}(1,1)=6=\frac{\partial f}{\partial y}(1,1) \\
\frac{\partial^{2} f}{\partial x^{2}}(1,1)=6=\frac{\partial^{2} f}{\partial y^{2}}(1,1), \quad \frac{\partial^{2} f}{\partial x \partial y}(1,1)=\frac{\partial^{2} f}{\partial y \partial x}(1,1)=3
\end{gathered}
$$

Hence, the second order Taylor polynomial near to $(1,1)$ is

$$
p_{2}(x, y)=5+6(x-1)+6(y-1)+3(x-1)^{2}+3(x-1)(y-1)+3(y-1)^{2}
$$

