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Extrema for Several Variable Functions

Learning Objectives:
- Learn the definition of local maximum, local minimum, critical point.
- Learn the statement of Taylor’s Second Order Formula.
- Learn how to compute the second order Taylor polynomial.
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Maxima & Minima
For the next few lectures we will see how (partial) derivatives of functions of several
variables f can be used to determine properties of f .

Let f : X ⊂ Rn → R be a scalar-valued function.

• We say that a ∈ X is a local minimum if there exists r > 0 such that

f(a) ≤ f(x) whenever |x− a| < r.

• We say that a is a local maximum if there exists r > 0 such that

f(x) ≤ f(a) whenever |x− a| < r.

Example: Let f(x, y) = x2 + y2. Then, (0, 0) is a local minimum: take r = 1
(for example) then, for any x = (x, y) such that |x| =

√
x2 + y2 < 1 we have

f(x, y) = x2 + y2 ≥ 0 = f(0, 0).

Remark: As we will soon see, this example is indicative of the behaviour of a
function near a local minimum.

Suppose that a = (a, b) ∈ R2 is a local maximum of the differentiable function
f(x, y). Then, for h ∈ R sufficiently small, we have

f(a+ h, b)− f(a, b) ≤ 0.

In particular, if h > 0 is sufficiently small then

f(a+ h, b)− f(a, b)

h
≤ 0 =⇒ ∂f

∂x
(a, b) ≤ 0

Meanwhile, if h < 0 is sufficiently small then

f(a+ h, b)− f(a, b)

h
≥ 0 =⇒ ∂f

∂x
(a, b) ≥ 0

Hence, ∂f
∂x

(a, b) = 0. A similar argument shows that ∂f
∂y

(a, b) = 0.

Remark:
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1. Proceeding as above, we can show that if a is a local minimum of f then
∂f
∂x

(a) = ∂f
∂y

(a) = 0.

2. An analogous result holds more generally:

Multivariable Fermat’s Theorem

Suppose that f : X ⊂ Rn → R is differentiable. If a is a
local maximum/minimum of f then ∇f(a) = 0.

A point a ∈ X such that ∇f(a) = 0, or f is not differentiable at a is called a critical
point of f .

We have an approach to determining local maxima/minima of a function f :

• Determine the critical points of f ;

• Check whether the critical points just found are local maxima/minima.

Consider the following level curve diagram of

f(x, y) = cos(x) cos(y), −4 ≤ x, y ≤ 4
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Exercise: Using the level curve diagram

• indicate all the local maxima/minima (there are nine points altogether);

• find a critical point that is not a local maximum/minimum (there are four
critical points that are not local max/min).
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How would we determine these points without the level curve diagram?
First we determine the critical points of f(x, y) = cos(x) cos(y) - these are those
points (a, b) in the domain of f satisfying[

0 0
]

= ∇f(a, b) =
[
− sin(a) cos(b) − cos(a) sin(b)

]
=⇒ sin(a) cos(b) = 0 = cos(a) sin(b)

=⇒ (a, b) = (rπ/2, sπ/2), r, s ∈ {−2,−1, 0, 1, 2}
(Recall that the domain of f is {(x, y) | − 4 ≤ x, y ≤ 4})
For each of these critical points we check if they are local maximum/minimums. For
example, if (a, b) = (0, 0) let’s check how f(x, y) changes as we move away from
(0, 0): for h, k sufficiently small and nonzero

f(h, k)− f(0, 0) = cos(h) cos(k)− cos(0) cos(0) = cos(h) cos(k)− 1 < 0

Hence, (0, 0) is a local maximum. Using the double angle formula cos(A ± B) =
cos(A) cos(B)∓ sin(A) sin(B), a similar computation shows that

local maximum: (0, 0), (−π,−π), (−π, π), (π,−π), (π, π)
local minimum: (±π, 0), (0,±π)

What about the critical point (π/2, π/2)? This point is neither a local maximum
nor a local minimum. The level curve diagram indicates this point is not a local
maximum or local minimum. Let’s check how f(x, y) changes as we move away from
(π/2, π/2): for h, k sufficiently small and nonzero

f(π/2 + h, π/2 + k)− f(π/2, π/2) = cos(π/2 + h) cos(π/2 + k)− cos(π/2) cos(π/2)

= sin(h) sin(k)

In particular:

f(π/2 + h, π/2 + k)− f(π/2, π/2)

{
< 0, if h > 0, k < 0 or h < 0, k > 0

> 0, if h, k > 0 or h, k < 0

Near to the critical point (π/2, π/2), f(x, y) is both strictly increasing and
strictly decreasing.

Question:

Is there a methodical way to determine whether a critical point is a local
maximum/minimum/neither of a differentiable function f?

Taylor’s Theorem: Second Order Formula
Let f(x, y) be a function with continuous second partial (mixed) derivatives having
domain X ⊂ R2. We’ve already seen a first order approximation to f(x, y) near to
(a, b) ∈ X: this is the linearisation L(x, y) of f(x, y) near to (a, b)

L(x, y) = f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b)

If (a, b) is a critical point of f(x, y), so that ∇f(a, b) = 0t, then L(x, y) = f(a, b) is
a constant function. A natural question is the following:
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Question:

Is there a degree two polynomial function

p2(x, y) = α + β(x− a) + γ(y − b) + δ(x− a)2 + ε(x− a)(y − b) + η(y − b)2

that ‘closely approximates’ f(x, y) near to (a, b)?

Suppose that such a polynomial function existed. Then, it would seem reasonable
to expect

p2(a, b) = α

∂p2
∂x

(a, b) = β,
∂f

∂y
(a, b) = γ

∂2f

∂x2
(a, b) = 2δ,

∂2f

∂x∂y
(a, b) = 2ε,

∂2f

∂y2
(a, b) = 2η

In fact, it’s possible to show that such a polynomial does exist, in general:

Taylor’s Theorem: Second Order Formula

Let f : X ⊂ Rn → R have continuous second order partial derivatives,
a = (a1, . . . , an) ∈ X. Then, there exists a degree two polynomial p2(x),
called the second order Taylor polynomial of f(x, y) near a, such that

lim
x→a

|f(x)− p2(x)|
|x− a|2

= 0

Moreover,

p2(x) = f(a) +
n∑

i=1

∂f

∂xi
(a)(xi − ai) +

1

2

n∑
i,j=1

∂2f

∂xi∂xj
(a)(xi − ai)(xj − aj) (∗)

Remark:

1. For a function f(x, y) of two variables

p2(x, y) = f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b) +
1

2
fxx(a, b)(x− a)2

+fxy(a, b)(x− a)(y − b) +
1

2
fyy(a, b)(y − b)2

2. (∗) can be written in the compact form

p2(x) = f(a) +∇f(a)(x− a) +
1

2
(x− a)tHf(a)(x− a)

where Hf(a) is an n× n symmetric matrix called the Hessian of f . We will
introduce the Hessian in the next lecture. For n = 2, the Hessian is

Hf(a, b) =

[
∂2f
∂x2 (a, b) ∂2f

∂y∂x
(a, b)

∂2f
∂x∂y

(a, b) ∂2f
∂y2

(a, b)

]
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Example:

1. Consider f(x, y) = cos(x) cos(y), (a, b) = (0, 0). Then,

f(0, 0) = 1, fx(0, 0) = fy(0, 0) = 0, fxx(0, 0) = fyy(0, 0) = −1, fxy(0, 0) = 0

Hence, the second order Taylor polynomial of f(x, y) near (0, 0)

p2(x) = 1− 1

2
x2 − 1

2
y2

2. Consider the function f(x, y) = x3 + 3xy + y3. Then,

f(1, 1) = 5,
∂f

∂x
(1, 1) = 6 =

∂f

∂y
(1, 1),

∂2f

∂x2
(1, 1) = 6 =

∂2f

∂y2
(1, 1),

∂2f

∂x∂y
(1, 1) =

∂2f

∂y∂x
(1, 1) = 3

Hence, the second order Taylor polynomial near to (1, 1) is

p2(x, y) = 5 + 6(x− 1) + 6(y − 1) + 3(x− 1)2 + 3(x− 1)(y − 1) + 3(y − 1)2
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