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LEARNING OBJECTIVES:
- Understand the Solution to the Potential Function Problem.
- Learn the definition of local maximum, local minimum, critical point.
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Summary of Potential Function Problem
Let F = [U(I’ y)] be a continuous vector field on X C R2.

v(z,y)
Potential Function Problem

Under what conditions does there exist a potential function f for
Fie. sothat Vf=F?

We saw a (local) solution to the Potential Function Problem:

Local Solution to Potential Function Problem

Suppose X is R? or an open disc/rectangle. If g—“ = % then there
y z
exists a potential function f for F.

Example: The following non-conservative vector field highlights the importance of
the assumption on the domain:
—y
F= {ﬁﬂf}
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When X is a more general subset of R? we’ve seen the following necessary conditions:

Necessary Conditions for Potential Functions
Suppose Vf = F. Then,

1. Qu — 9
9y~ Oz

2. fCE -ds = fC, F - ds, for any two (oriented) curves in X with same
start/end point (independence of path property)

3. JoF-ds =0, for any (oriented) closed curve in X (closed curve
property)




Remark: the vector field F' given above fails property 3.: the vector line integral of
F along the unit circle is 2.

It turns out that conditions 2. and 3. are equivalent:

e Suppose that 2. holds. Let C' be an (oriented) closed curve in X. Choose
P,Q € C, P # Q. Define C] to be the the (oriented) segment of C' starting
at P and ending at @, and let Cy be the (oriented) segment of C' starting at
() and ending at P. Write (Cy),ppy for Cy but with the reversed orientation, so
that (Cy)epp starts at P and ends at (. In particular, both C; and (Cs),p are
(oriented) curves in X starting/ending at the same points.

Then, we can think of C' as the piecewise curve (C, Cs). Hence,
[Eeas= [ Fase [ peas= [ peas- [ peas—o
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by the independence of path property.
e Suppose that 3. holds. Let Cy and Cy be two (oriented) curves in X both

starting at P and ending at ). Define the piecewise (oriented) closed curve
C = (C4, (C2)opp). Then, using the closed curve property we have
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Remarkably, the equivalent independence of path and closed curve properties
completely characterise conservative vector fields.

Solution to Potential Function Problem

Suppose that X, the domain of £, has the following property: any two points
P,Q € X can be joined by a C'-path (equiv. an oriented curve).
The following conditions are equivalent:

1. There exists a potential function f for F.
2. F has the independence of path property.

3. F has the closed curve property.

Sketch of Proof: It suffices to show that 2. — 1..
Pick an arbitrary point a € X. Define, for any z € X,

f@:/cﬂdg

where C' is an (oriented) curve in X joining a to z. By the independence of path
property f is well-defined (i.e. it does not depend on the curve C) so we may write
(taking some liberty with notation)

f(z)z/:E-dg
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We need to show that f is differentiable and % = u, g—i = 0.
Let e; = (1,0) € R%. By definition

li
h—0

=

By independence of path property of F we can determine this vector line integral
along any path from z to x + he;. For h sufficiently small we choose the straight line
segment path x 4 te;, 0 <t < h. Then,

F(z+te;) - e1 = u(z + te;)

and

1 z+hey 1 h
lim — F-ds=1lim —
hlg%h/x F-ds lim i u(z + tey)dt
Now, an application of Fundamental Theorem of Calculus (here’s where we require
that F' is continuous) gives

h

1
lim — [ u(z + ter)dt = u(x)
h—0 0

That is, g—f = u. A similar argument shows g—f = 0.
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Remark: The Solution to the Potential Function Problem given above holds more
generally for continuous vector fields with domain X C R".

Maxima & Minima
For the next few lectures we will see how (partial) derivatives of functions of several
variables f can be used to determine properties of f.

Let f: X C R" — R be a scalar-valued function.

e We say that a € X is a local minimum if there exists r > 0 such that

f(a) < f(z) whenever |z —a| <.

e We say that a is a local maximum if there exists » > 0 such that

f(z) < f(a) whenever |z —a| <.



Example: Let f(z,y) = 2* + y*>. Then, (0,0) is a local minimum: take r = 1
(for example) then, for any x = (x,y) such that |z| = /22 +y? < 1 we have
flx,y) = a? +y* 2 0= f(0,0).

Remark: As we will soon see, this example is indicative of the behaviour of a
function near a local minimum.

Suppose that a = (a,b) € R? is a local maximum of the differentiable function
f(z,y). Then, for h € R sufficiently small, we have

fla+h,b) — f(a,b) <0.

In particular, if h > 0 is sufficiently small then

f(a+h7b)_f(aub) af
< — <
h <0 = o (a,b) <0
Meanwhile, if h < 0 is sufficiently small then
f(a+h>b)_f(aab)20 —_— ﬁ(a,b)zo
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Hence, g—$(a, b) = 0. A similar argument shows that g—i(a, b) = 0.

Remark:

1. Proceeding as above, we can show that if a is a local minimum of f then
(a) =% (a)=0.
w Y

2. An analogous result holds more generally:

Multivariable Fermat’s Theorem

Suppose that f: X C R” — R is differentiable. If a is a
local maximum/minimum of f then V f(a) = 0.

A point a € X such that Vf(a) = 0, or f is not differentiable at a is called a critical
point of f.

We have an approach to determining local maxima/minima of a function f:
e Determine the critical points of f;
e Check whether the critical points just found are local maxima/minima.

We'll see how to put this approach in practice in the next lecture. Let’s investigate
what to expect using the level curve diagram of f(x,y) = cos(z) cos(y):






