

April 18 Lecture

TEXTBOOK REFERENCE:

- Vector Calculus, Colley, 4th Edition: §4.2

The Solution to the Potential Function Problem

LEARNING OBJECTIVES:

- Understand the Solution to the Potential Function Problem.

- Learn the definition of local maximum, local minimum, critical point.

KEYWORDS: Solution to Potential Function Problem, local maximum, local minimum, critical point

Summary of Potential Function Problem

Let $\underline{F} = \begin{bmatrix} u(x,y) \\ v(x,y) \end{bmatrix}$ be a continuous vector field on $X \subseteq \mathbb{R}^2$.

Potential Function Problem

Under what conditions does there exist a potential function f for \underline{F} i.e. so that $\nabla f = \underline{F}$?

We saw a (local) solution to the Potential Function Problem:

Local Solution to Potential Function Problem

Suppose X is \mathbb{R}^2 or an open disc/rectangle. If $\frac{\partial u}{\partial y} = \frac{\partial v}{\partial x}$ then there exists a potential function f for \underline{F} .

Example: The following non-conservative vector field highlights the importance of the assumption on the domain:

$$\underline{F} = \begin{bmatrix} \frac{-y}{x^2 + y^2} \\ \frac{x}{x^2 + y^2} \end{bmatrix}$$

When X is a more general subset of \mathbb{R}^2 we've seen the following necessary conditions:

Necessary Conditions for Potential Functions

Suppose $\nabla f = \underline{F}$. Then,

1.
$$\frac{\partial u}{\partial y} = \frac{\partial v}{\partial x}$$
.

- 2. $\int_C \underline{F} \cdot d\underline{s} = \int_{C'} \underline{F} \cdot d\underline{s}$, for any two (oriented) curves in X with same start/end point (independence of path property)
- 3. $\int_C \underline{F} \cdot d\underline{s} = 0$, for any (oriented) closed curve in X (closed curve property)

Remark: the vector field \underline{F} given above fails property 3.: the vector line integral of \underline{F} along the unit circle is 2π .

It turns out that conditions 2. and 3. are equivalent:

• Suppose that 2. holds. Let C be an (oriented) closed curve in X. Choose $P, Q \in C, P \neq Q$. Define C_1 to be the the (oriented) segment of C starting at P and ending at Q, and let C_2 be the (oriented) segment of C starting at Q and ending at P. Write $(C_2)_{opp}$ for C_2 but with the reversed orientation, so that $(C_2)_{opp}$ starts at P and ends at Q. In particular, both C_1 and $(C_2)_{opp}$ are (oriented) curves in X starting/ending at the same points.

Then, we can think of C as the piecewise curve (C_1, C_2) . Hence,

$$\int_C \underline{F} \cdot d\underline{s} = \int_{C_1} \underline{F} \cdot d\underline{s} + \int_{C_2} \underline{F} \cdot d\underline{s} = \int_{C_1} \underline{F} \cdot d\underline{s} - \int_{(C_2)_{opp}} \underline{F} \cdot d\underline{s} = 0$$

by the independence of path property.

• Suppose that 3. holds. Let C_1 and C_2 be two (oriented) curves in X both starting at P and ending at Q. Define the piecewise (oriented) closed curve $C = (C_1, (C_2)_{opp})$. Then, using the closed curve property we have

$$0 = \int_C \underline{F} \cdot d\underline{s} = \int_{C_1} \underline{F} \cdot d\underline{s} + \int_{(C_2)_{opp}} \underline{F} \cdot d\underline{s} \implies \int_{C_1} \underline{F} \cdot d\underline{s} = \int_{C_2} \underline{F} \cdot d\underline{s}$$

Remarkably, the equivalent **independence of path** and **closed curve** properties completely characterise conservative vector fields.

Solution to Potential Function Problem

Suppose that X, the domain of \underline{F} , has the following property: any two points $P, Q \in X$ can be joined by a C^1 -path (equiv. an oriented curve). The following conditions are equivalent:

- 1. There exists a potential function f for \underline{F} .
- 2. \underline{F} has the independence of path property.
- 3. \underline{F} has the closed curve property.

Sketch of Proof: It suffices to show that 2. \implies 1.. Pick an arbitrary point $\underline{a} \in X$. Define, for any $\underline{x} \in X$,

$$f(\underline{x}) = \int_C \underline{F} \cdot d\underline{s}$$

where C is an (oriented) curve in X joining \underline{a} to \underline{x} . By the independence of path property f is well-defined (i.e. it does not depend on the curve C) so we may write (taking some liberty with notation)

$$f(\underline{x}) = \int_{\underline{a}}^{\underline{x}} \underline{F} \cdot d\underline{s}$$

We need to show that f is differentiable and $\frac{\partial f}{\partial x} = u$, $\frac{\partial f}{\partial y} = v$. Let $e_1 = (1,0) \in \mathbb{R}^2$. By definition

$$\begin{split} \frac{\partial f}{\partial x}(x,y) &= \lim_{h \to 0} \frac{f(x+h,y) - f(x,y)}{h} \\ &= \lim_{h \to 0} \frac{1}{h} \left(\int_{\underline{a}}^{\underline{x}+he_1} \underline{F} \cdot d\underline{s} - \int_{\underline{a}}^{\underline{x}} \underline{F} \cdot d\underline{s} \right) \\ &= \lim_{h \to 0} \frac{1}{h} \left(\int_{\underline{x}}^{\underline{x}+he_1} \underline{F} \cdot d\underline{s} + \int_{\underline{a}}^{\underline{x}} \underline{F} \cdot d\underline{s} - \int_{\underline{a}}^{\underline{x}} \underline{F} \cdot d\underline{s} \right) \\ &= \lim_{h \to 0} \frac{1}{h} \int_{\underline{x}}^{\underline{x}+he_1} \underline{F} \cdot d\underline{s} \end{split}$$

By independence of path property of \underline{F} we can determine this vector line integral along any path from \underline{x} to $\underline{x} + he_1$. For h sufficiently small we choose the straight line segment path $\underline{x} + te_i$, $0 \le t \le h$. Then,

$$\underline{F}(\underline{x} + te_i) \cdot e_1 = u(\underline{x} + te_i)$$

and

$$\lim_{h \to 0} \frac{1}{h} \int_{\underline{x}}^{\underline{x}+he_1} \underline{F} \cdot d\underline{s} = \lim_{h \to 0} \frac{1}{h} \int_0^h u(\underline{x}+te_1) dt$$

Now, an application of Fundamental Theorem of Calculus (here's where we require that \underline{F} is continuous) gives

$$\lim_{h \to 0} \frac{1}{h} \int_0^h u(\underline{x} + te_1) dt = u(\underline{x})$$

That is, $\frac{\partial f}{\partial x} = u$. A similar argument shows $\frac{\partial f}{\partial y} = v$.

Remark: The Solution to the Potential Function Problem given above holds more generally for continuous vector fields with domain $X \subseteq \mathbb{R}^n$.

Maxima & Minima

For the next few lectures we will see how (partial) derivatives of functions of several variables f can be used to determine properties of f.

Let $f: X \subset \mathbb{R}^n \to \mathbb{R}$ be a scalar-valued function.

• We say that $\underline{a} \in X$ is a **local minimum** if there exists r > 0 such that

$$f(\underline{a}) \leq f(\underline{x})$$
 whenever $|\underline{x} - \underline{a}| < r$.

• We say that \underline{a} is a **local maximum** if there exists r > 0 such that

 $f(\underline{x}) \le f(\underline{a})$ whenever $|\underline{x} - \underline{a}| < r$.

Example: Let $f(x,y) = x^2 + y^2$. Then, (0,0) is a local minimum: take r = 1 (for example) then, for any $\underline{x} = (x,y)$ such that $|\underline{x}| = \sqrt{x^2 + y^2} < 1$ we have $f(x,y) = x^2 + y^2 \ge 0 = f(0,0)$.

Remark: As we will soon see, this example is indicative of the behaviour of a function near a local minimum.

Suppose that $\underline{a} = (a, b) \in \mathbb{R}^2$ is a local maximum of the **differentiable** function f(x, y). Then, for $h \in \mathbb{R}$ sufficiently small, we have

$$f(a+h,b) - f(a,b) \le 0.$$

In particular, if h > 0 is sufficiently small then

$$\frac{f(a+h,b)-f(a,b)}{h} \leq 0 \quad \Longrightarrow \quad \frac{\partial f}{\partial x}(a,b) \leq 0$$

Meanwhile, if h < 0 is sufficiently small then

$$\frac{f(a+h,b) - f(a,b)}{h} \ge 0 \quad \Longrightarrow \quad \frac{\partial f}{\partial x}(a,b) \ge 0$$

Hence, $\frac{\partial f}{\partial x}(a, b) = 0$. A similar argument shows that $\frac{\partial f}{\partial y}(a, b) = 0$. **Remark:**

- 1. Proceeding as above, we can show that if \underline{a} is a local minimum of f then $\frac{\partial f}{\partial x}(\underline{a}) = \frac{\partial f}{\partial y}(\underline{a}) = 0.$
- 2. An analogous result holds more generally:

Multivariable Fermat's Theorem

Suppose that $f: X \subset \mathbb{R}^n \to \mathbb{R}$ is differentiable. If \underline{a} is a local maximum/minimum of f then $\nabla f(\underline{a}) = \underline{0}$.

A point $\underline{a} \in X$ such that $\nabla f(\underline{a}) = \underline{0}$, or f is not differentiable at \underline{a} is called a **critical** point of f.

We have an approach to determining local maxima/minima of a function f:

- Determine the critical points of f;
- Check whether the critical points just found are local maxima/minima.

We'll see how to put this approach in practice in the next lecture. Let's investigate what to expect using the level curve diagram of $f(x, y) = \cos(x) \cos(y)$:

