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- Understand the Solution to the Potential Function Problem.
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Summary of Potential Function Problem

Let F =

[
u(x, y)
v(x, y)

]
be a continuous vector field on X ⊆ R2.

Potential Function Problem

Under what conditions does there exist a potential function f for
F i.e. so that ∇f = F?

We saw a (local) solution to the Potential Function Problem:

Local Solution to Potential Function Problem

Suppose X is R2 or an open disc/rectangle. If ∂u
∂y

= ∂v
∂x

then there
exists a potential function f for F .

Example: The following non-conservative vector field highlights the importance of
the assumption on the domain:

F =

[ −y
x2+y2

x
x2+y2

]
When X is a more general subset of R2 we’ve seen the following necessary conditions:

Necessary Conditions for Potential Functions

Suppose ∇f = F . Then,

1. ∂u
∂y

= ∂v
∂x

.

2.
∫
C
F · ds =

∫
C′ F · ds, for any two (oriented) curves in X with same

start/end point (independence of path property)

3.
∫
C
F · ds = 0, for any (oriented) closed curve in X (closed curve

property)
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Remark: the vector field F given above fails property 3.: the vector line integral of
F along the unit circle is 2π.

It turns out that conditions 2. and 3. are equivalent:

• Suppose that 2. holds. Let C be an (oriented) closed curve in X. Choose
P,Q ∈ C, P 6= Q. Define C1 to be the the (oriented) segment of C starting
at P and ending at Q, and let C2 be the (oriented) segment of C starting at
Q and ending at P . Write (C2)opp for C2 but with the reversed orientation, so
that (C2)opp starts at P and ends at Q. In particular, both C1 and (C2)opp are
(oriented) curves in X starting/ending at the same points.

Then, we can think of C as the piecewise curve (C1, C2). Hence,∫
C

F · ds =

∫
C1

F · ds+

∫
C2

F · ds =

∫
C1

F · ds−
∫
(C2)opp

F · ds = 0

by the independence of path property.

• Suppose that 3. holds. Let C1 and C2 be two (oriented) curves in X both
starting at P and ending at Q. Define the piecewise (oriented) closed curve
C = (C1, (C2)opp). Then, using the closed curve property we have

0 =

∫
C

F · ds =

∫
C1

F · ds+

∫
(C2)opp

F · ds =⇒
∫
C1

F · ds =

∫
C2

F · ds

Remarkably, the equivalent independence of path and closed curve properties
completely characterise conservative vector fields.

Solution to Potential Function Problem

Suppose that X, the domain of F , has the following property: any two points
P,Q ∈ X can be joined by a C1-path (equiv. an oriented curve).
The following conditions are equivalent:

1. There exists a potential function f for F .

2. F has the independence of path property.

3. F has the closed curve property.

Sketch of Proof: It suffices to show that 2. =⇒ 1..

Pick an arbitrary point a ∈ X. Define, for any x ∈ X,

f(x) =

∫
C

F · ds

where C is an (oriented) curve in X joining a to x. By the independence of path
property f is well-defined (i.e. it does not depend on the curve C) so we may write
(taking some liberty with notation)

f(x) =

∫ x

a

F · ds

2



We need to show that f is differentiable and ∂f
∂x

= u, ∂f
∂y

= v.

Let e1 = (1, 0) ∈ R2. By definition

∂f

∂x
(x, y) = lim

h→0

f(x+ h, y)− f(x, y)

h

= lim
h→0

1

h

(∫ x+he1

a

F · ds−
∫ x

a

F · ds
)

= lim
h→0

1

h

(∫ x+he1

x

F · ds+

∫ x

a

F · ds−
∫ x

a

F · ds
)

= lim
h→0

1

h

∫ x+he1

x

F · ds

By independence of path property of F we can determine this vector line integral
along any path from x to x+he1. For h sufficiently small we choose the straight line
segment path x+ tei, 0 ≤ t ≤ h. Then,

F (x+ tei) · e1 = u(x+ tei)

and

lim
h→0

1

h

∫ x+he1

x

F · ds = lim
h→0

1

h

∫ h

0

u(x+ te1)dt

Now, an application of Fundamental Theorem of Calculus (here’s where we require
that F is continuous) gives

lim
h→0

1

h

∫ h

0

u(x+ te1)dt = u(x)

That is, ∂f
∂x

= u. A similar argument shows ∂f
∂y

= v.

Remark: The Solution to the Potential Function Problem given above holds more
generally for continuous vector fields with domain X ⊆ Rn.

Maxima & Minima
For the next few lectures we will see how (partial) derivatives of functions of several
variables f can be used to determine properties of f .

Let f : X ⊂ Rn → R be a scalar-valued function.

• We say that a ∈ X is a local minimum if there exists r > 0 such that

f(a) ≤ f(x) whenever |x− a| < r.

• We say that a is a local maximum if there exists r > 0 such that

f(x) ≤ f(a) whenever |x− a| < r.
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Example: Let f(x, y) = x2 + y2. Then, (0, 0) is a local minimum: take r = 1
(for example) then, for any x = (x, y) such that |x| =

√
x2 + y2 < 1 we have

f(x, y) = x2 + y2 ≥ 0 = f(0, 0).

Remark: As we will soon see, this example is indicative of the behaviour of a
function near a local minimum.

Suppose that a = (a, b) ∈ R2 is a local maximum of the differentiable function
f(x, y). Then, for h ∈ R sufficiently small, we have

f(a+ h, b)− f(a, b) ≤ 0.

In particular, if h > 0 is sufficiently small then

f(a+ h, b)− f(a, b)

h
≤ 0 =⇒ ∂f

∂x
(a, b) ≤ 0

Meanwhile, if h < 0 is sufficiently small then

f(a+ h, b)− f(a, b)

h
≥ 0 =⇒ ∂f

∂x
(a, b) ≥ 0

Hence, ∂f
∂x

(a, b) = 0. A similar argument shows that ∂f
∂y

(a, b) = 0.

Remark:

1. Proceeding as above, we can show that if a is a local minimum of f then
∂f
∂x

(a) = ∂f
∂y

(a) = 0.

2. An analogous result holds more generally:

Multivariable Fermat’s Theorem

Suppose that f : X ⊂ Rn → R is differentiable. If a is a
local maximum/minimum of f then ∇f(a) = 0.

A point a ∈ X such that ∇f(a) = 0, or f is not differentiable at a is called a critical
point of f .

We have an approach to determining local maxima/minima of a function f :

• Determine the critical points of f ;

• Check whether the critical points just found are local maxima/minima.

We’ll see how to put this approach in practice in the next lecture. Let’s investigate
what to expect using the level curve diagram of f(x, y) = cos(x) cos(y):
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