Middlebury
College

April 18 Lecture

Textbook Reference:

- Vector Calculus, Colley, 4th Edition: §4.2

The Solution to the Potential Function Problem
Learning Objectives:

- Understand the Solution to the Potential Function Problem.
- Learn the definition of local maximum, local minimum, critical point.

Keywords: Solution to Potential Function Problem, local maximum, local minimum, critical point

Summary of Potential Function Problem

Let $\underline{F}=\left[\begin{array}{l}u(x, y) \\ v(x, y)\end{array}\right]$ be a continuous vector field on $X \subseteq \mathbb{R}^{2}$.

Potential Function Problem

Under what conditions does there exist a potential function f for \underline{F} i.e. so that $\nabla f=\underline{F}$?

We saw a (local) solution to the Potential Function Problem:

Local Solution to Potential Function Problem

Suppose X is \mathbb{R}^{2} or an open disc/rectangle. If $\frac{\partial u}{\partial y}=\frac{\partial v}{\partial x}$ then there exists a potential function f for \underline{F}.

Example: The following non-conservative vector field highlights the importance of the assumption on the domain:

$$
\underline{F}=\left[\begin{array}{c}
\frac{-y}{x^{2}+y^{2}} \\
\frac{x}{x^{2}+y^{2}}
\end{array}\right]
$$

When X is a more general subset of \mathbb{R}^{2} we've seen the following necessary conditions:

Necessary Conditions for Potential Functions

Suppose $\nabla f=\underline{F}$. Then,

1. $\frac{\partial u}{\partial y}=\frac{\partial v}{\partial x}$.
2. $\int_{C} \underline{F} \cdot d \underline{s}=\int_{C^{\prime}} \underline{F} \cdot d \underline{s}$, for any two (oriented) curves in X with same start/end point (independence of path property)
3. $\int_{C} \underline{F} \cdot d \underline{s}=0$, for any (oriented) closed curve in X (closed curve property)

Remark: the vector field \underline{F} given above fails property 3.: the vector line integral of \underline{F} along the unit circle is 2π.
It turns out that conditions 2. and 3. are equivalent:

- Suppose that 2. holds. Let C be an (oriented) closed curve in X. Choose $P, Q \in C, P \neq Q$. Define C_{1} to be the the (oriented) segment of C starting at P and ending at Q, and let C_{2} be the (oriented) segment of C starting at Q and ending at P. Write $\left(C_{2}\right)_{o p p}$ for C_{2} but with the reversed orientation, so that $\left(C_{2}\right)_{\text {opp }}$ starts at P and ends at Q. In particular, both C_{1} and $\left(C_{2}\right)_{\text {opp }}$ are (oriented) curves in X starting/ending at the same points.
Then, we can think of C as the piecewise curve (C_{1}, C_{2}). Hence,

$$
\int_{C} \underline{F} \cdot d \underline{s}=\int_{C_{1}} \underline{F} \cdot d \underline{s}+\int_{C_{2}} \underline{F} \cdot d \underline{s}=\int_{C_{1}} \underline{F} \cdot d \underline{s}-\int_{\left(C_{2}\right)_{o p p}} \underline{F} \cdot d \underline{s}=0
$$

by the independence of path property.

- Suppose that 3. holds. Let C_{1} and C_{2} be two (oriented) curves in X both starting at P and ending at Q. Define the piecewise (oriented) closed curve $C=\left(C_{1},\left(C_{2}\right)_{\text {opp }}\right)$. Then, using the closed curve property we have

$$
0=\int_{C} \underline{F} \cdot d \underline{s}=\int_{C_{1}} \underline{F} \cdot d \underline{s}+\int_{\left(C_{2}\right)_{o p p}} \underline{F} \cdot d \underline{s} \quad \Longrightarrow \quad \int_{C_{1}} \underline{F} \cdot d \underline{s}=\int_{C_{2}} \underline{F} \cdot d \underline{s}
$$

Remarkably, the equivalent independence of path and closed curve properties completely characterise conservative vector fields.

Solution to Potential Function Problem

Suppose that X, the domain of \underline{F}, has the following property: any two points $P, Q \in X$ can be joined by a C^{1}-path (equiv. an oriented curve).
The following conditions are equivalent:

1. There exists a potential function f for \underline{F}.
2. \underline{F} has the independence of path property.
3. \underline{F} has the closed curve property.

Sketch of Proof: It suffices to show that $2 . \Longrightarrow 1$..
Pick an arbitrary point $\underline{a} \in X$. Define, for any $\underline{x} \in X$,

$$
f(\underline{x})=\int_{C} \underline{F} \cdot d \underline{s}
$$

where C is an (oriented) curve in X joining \underline{a} to \underline{x}. By the independence of path property f is well-defined (i.e. it does not depend on the curve C) so we may write (taking some liberty with notation)

$$
f(\underline{x})=\int_{\underline{a}}^{\underline{x}} \underline{F} \cdot d \underline{s}
$$

We need to show that f is differentiable and $\frac{\partial f}{\partial x}=u, \frac{\partial f}{\partial y}=v$.
Let $e_{1}=(1,0) \in \mathbb{R}^{2}$. By definition

$$
\begin{aligned}
\frac{\partial f}{\partial x}(x, y) & =\lim _{h \rightarrow 0} \frac{f(x+h, y)-f(x, y)}{h} \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left(\int_{\underline{a}}^{\underline{x}+h e_{1}} \underline{F} \cdot d \underline{s}-\int_{\underline{a}}^{\underline{x}} \underline{F} \cdot d \underline{s}\right) \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left(\int_{\underline{x}}^{\underline{x}+h e_{1}} \underline{F} \cdot d \underline{s}+\int_{\underline{a}}^{\underline{x}} \underline{F} \cdot d \underline{s}-\int_{\underline{a}}^{\underline{x}} \underline{F} \cdot d \underline{s}\right) \\
& =\lim _{h \rightarrow 0} \frac{1}{h} \int_{\underline{x}}^{\underline{x}+h e_{1}} \underline{F} \cdot d \underline{s}
\end{aligned}
$$

By independence of path property of \underline{F} we can determine this vector line integral along any path from \underline{x} to $\underline{x}+h e_{1}$. For h sufficiently small we choose the straight line segment path $\underline{x}+t e_{i}, 0 \leq t \leq h$. Then,

$$
\underline{F}\left(\underline{x}+t e_{i}\right) \cdot e_{1}=u\left(\underline{x}+t e_{i}\right)
$$

and

$$
\lim _{h \rightarrow 0} \frac{1}{h} \int_{\underline{x}}^{\underline{x}+h e_{1}} \underline{F} \cdot d \underline{s}=\lim _{h \rightarrow 0} \frac{1}{h} \int_{0}^{h} u\left(\underline{x}+t e_{1}\right) d t
$$

Now, an application of Fundamental Theorem of Calculus (here's where we require that \underline{F} is continuous) gives

$$
\lim _{h \rightarrow 0} \frac{1}{h} \int_{0}^{h} u\left(\underline{x}+t e_{1}\right) d t=u(\underline{x})
$$

That is, $\frac{\partial f}{\partial x}=u$. A similar argument shows $\frac{\partial f}{\partial y}=v$.
Remark: The Solution to the Potential Function Problem given above holds more generally for continuous vector fields with domain $X \subseteq \mathbb{R}^{n}$.

Maxima \& Minima

For the next few lectures we will see how (partial) derivatives of functions of several variables f can be used to determine properties of f.

Let $f: X \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a scalar-valued function.

- We say that $\underline{a} \in X$ is a local minimum if there exists $r>0$ such that

$$
f(\underline{a}) \leq f(\underline{x}) \quad \text { whenever }|\underline{x}-\underline{a}|<r .
$$

- We say that \underline{a} is a local maximum if there exists $r>0$ such that

$$
f(\underline{x}) \leq f(\underline{a}) \quad \text { whenever }|\underline{x}-\underline{a}|<r .
$$

Example: Let $f(x, y)=x^{2}+y^{2}$. Then, $(0,0)$ is a local minimum: take $r=1$ (for example) then, for any $\underline{x}=(x, y)$ such that $|\underline{x}|=\sqrt{x^{2}+y^{2}}<1$ we have $f(x, y)=x^{2}+y^{2} \geq 0=f(0,0)$.
Remark: As we will soon see, this example is indicative of the behaviour of a function near a local minimum.

Suppose that $\underline{a}=(a, b) \in \mathbb{R}^{2}$ is a local maximum of the differentiable function $f(x, y)$. Then, for $h \in \mathbb{R}$ sufficiently small, we have

$$
f(a+h, b)-f(a, b) \leq 0
$$

In particular, if $h>0$ is sufficiently small then

$$
\frac{f(a+h, b)-f(a, b)}{h} \leq 0 \quad \Longrightarrow \quad \frac{\partial f}{\partial x}(a, b) \leq 0
$$

Meanwhile, if $h<0$ is sufficiently small then

$$
\frac{f(a+h, b)-f(a, b)}{h} \geq 0 \quad \Longrightarrow \quad \frac{\partial f}{\partial x}(a, b) \geq 0
$$

Hence, $\frac{\partial f}{\partial x}(a, b)=0$. A similar argument shows that $\frac{\partial f}{\partial y}(a, b)=0$.
Remark:

1. Proceeding as above, we can show that if \underline{a} is a local minimum of f then $\frac{\partial f}{\partial x}(\underline{a})=\frac{\partial f}{\partial y}(\underline{a})=0$.
2. An analogous result holds more generally:

Multivariable Fermat's Theorem

Suppose that $f: X \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ is differentiable. If \underline{a} is a local maximum/minimum of f then $\nabla f(\underline{a})=\underline{0}$.

A point $\underline{a} \in X$ such that $\nabla f(\underline{a})=\underline{0}$, or f is not differentiable at \underline{a} is called a critical point of f.
We have an approach to determining local maxima/minima of a function f :

- Determine the critical points of f;
- Check whether the critical points just found are local maxima/minima.

We'll see how to put this approach in practice in the next lecture. Let's investigate what to expect using the level curve diagram of $f(x, y)=\cos (x) \cos (y)$:

