April 16 Lecture

Textbook Reference:

- Vector Calculus, Colley, 4th Edition: §6.1

Reparameterisation

Learning Objectives:

- Understand the notion of reparameterisation of a path.
- Understand the effect of reparameterisation on vector line integrals.

KEYWORDS: reparameterisation, vector line integrals along curves

Today we will investigate the effect that reparameterisation has on vector line integrals.

Reparameterisations

Consider the C^{1}-path

$$
\underline{x}(t)=\left[\begin{array}{c}
t \\
2 t+1
\end{array}\right], \quad t \in[0,2]
$$

whose image curve is the straight line segment between $(0,1)$ and $(2,5)$.

The same line segment may also be parameterised by the path

$$
\underline{y}(t)=\left[\begin{array}{c}
2 t \\
4 t+1
\end{array}\right], \quad t \in[0,1]
$$

Remark: It's important to remember that \underline{x} and y are different paths describing the same curve (i.e. the line segment).
The paths $\underline{x}(t)$ and $\underline{y}(t)$ are, of course, related:

$$
\underline{x}(2 t)=\underline{y}(t), \quad \underline{x}(t)=\underline{y}(t / 2)
$$

We say that \underline{y} is a reparameterisation of \underline{x} (and \underline{x} is reparameterisation of \underline{y}). More generally:

Reparameterisation of paths

Let $\underline{x}:[a, b] \rightarrow \mathbb{R}^{n}$ be a C^{1}-path. We say that $\underline{y}:[c, d] \rightarrow \mathbb{R}^{n}$ is a reparameterisation of \underline{x} if there exists a bijective C^{1}-function ${ }^{11} u:[c, d] \rightarrow[a, b]$ so that

$$
\underline{y}(t)=\underline{x}(u(t)), \quad t \in[c, d]
$$

Example:

1. Consider the path

$$
\underline{x}(t)=\left[\begin{array}{c}
\cos (t) \\
\sin (t)
\end{array}\right], \quad t \in[-\pi / 2, \pi / 2]
$$

Define

$$
\underline{y}(t)=\left[\begin{array}{c}
\cos (4 t) \\
\sin (4 t)
\end{array}\right], \quad t \in[-\pi / 8, \pi / 8]
$$

Then \underline{y} is a reparameterisation of \underline{x} : if we define

$$
u:[-\pi / 8, \pi / 8] \rightarrow[-\pi / 2, \pi / 2], t \mapsto 4 t
$$

then $\underline{y}(t)=\underline{x}(u(t))$. Here $u^{-1}:[-\pi / 2, \pi / 2] \rightarrow[-\pi / 8, \pi / 8], u^{-1}(s)=s / 4$ is the inverse function of u.
2. The path

$$
\underline{z}(t)=\left[\begin{array}{c}
\sqrt{1-t^{2}} \\
t
\end{array}\right], \quad t \in[-1,1]
$$

is a reparameterisation of $\underline{x}(t)$: if we define

$$
u:[-1,1] \rightarrow[-\pi / 2, \pi / 2], t \mapsto \arcsin (t)
$$

then

$$
\underline{x}(u(t))=\left[\begin{array}{c}
\cos (\arcsin (t)) \\
\sin (\arcsin (t))
\end{array}\right]=\left[\begin{array}{c}
\sqrt{1-t^{2}} \\
t
\end{array}\right]=\underline{z}(t)
$$

Here we use that if $s=\arcsin (t)$ then $\sin (s)=t$ and we have the triangle

3. Let $\underline{x}:[a, b] \rightarrow \mathbb{R}^{n}$ be a C^{1}-path. Define the opposite path $\underline{x}_{o p p}:[a, b] \rightarrow \mathbb{R}^{n}$ to be

$$
\underline{x}_{o p p}(t) \stackrel{\text { def }}{=} \underline{x}(a+b-t)
$$

$\underline{x}_{\text {opp }}(t)$ is a reparameterisation of \underline{x} : we have

$$
u:[a, b] \rightarrow[a, b], t \mapsto a+b-t
$$

Observe that $\underline{x}_{\text {opp }}(a)=\underline{x}(b)$ and $\underline{x}_{o p p}(b)=\underline{x}(a)$. The path $\underline{x}_{o p p}(t)$ parameterises the same curve as $\underline{x}(t)$ but with opposite direction.

Important observations:

- If \underline{y} is a reparameterisation of \underline{x} then \underline{x} is a reparamerisation of \underline{y};
- If \underline{y} is a reparameterisation of \underline{x} then \underline{y} and \underline{x} are parameterisations of the same curve.

Suppose that $\underline{y}:[c, d] \rightarrow \mathbb{R}^{n}$ is a reparameterisation of $\underline{x}:[a, b] \rightarrow \mathbb{R}^{n}$, so that

$$
\underline{y}(t)=\underline{x}(u(t)) .
$$

We say that \underline{y} is

- orientation-preserving if $u(c)=a$ and $u(d)=b$,
- orientation-reversing if $u(c)=b$ and $u(d)=a$.

We now investigate the effects of reparameterisation on vector line integrals.
Let \underline{F} be a continuous vector field on $X \subset \mathbb{R}^{n}$. Suppose y is a reparameterisation of \underline{x} (with same notation as above), and their (common) image curve is contained in X. Then,

$$
\begin{aligned}
\int_{\underline{y}} \underline{F} \cdot d \underline{s} & =\int_{c}^{d} \underline{F}(\underline{y}(t)) \cdot \underline{y}^{\prime}(t) d t \\
& =\int_{c}^{d} \underline{F}(\underline{x}(u(t))) \cdot\left(\underline{x}^{\prime}(u(t)) u^{\prime}(t)\right) d t, \quad \text { because } \underline{y}=\underline{x} \circ u \\
= & \begin{cases}\int_{a}^{b} \underline{F}\left(\underline{x}(u) \cdot \underline{x}^{\prime}(u) d u,\right. & \text { if } \underline{y} \text { is orientation preserving } \\
\int_{b}^{a} \underline{F}\left(\underline{x}(u) \cdot \underline{x}^{\prime}(u) d u,\right. & \text { if } \underline{y} \text { is orientation reversing }\end{cases} \\
& = \begin{cases}\int_{\underline{x}} \underline{F} \cdot d \underline{s}, & \text { if } \underline{y} \text { is orientation-preserving } \\
-\int_{\underline{x}} \underline{F} \cdot d \underline{s}, & \text { if } \underline{y} \text { is orientation-reversing }\end{cases}
\end{aligned}
$$

In words,

- Vector line integrals are independent of orientation-preserving reparameterisations.
- Vector line integrals are independent (up to a sign) of orientation-reserving reparameterisations.

This allows us to define vector line integrals of vector fields \underline{F} along oriented curves C

$$
\int_{C} \underline{F} \cdot d \underline{s}
$$

rather than along paths.
Notation: It is common to denote the vector line integral of $\underline{F}=\left[\begin{array}{l}u(x, y) \\ v(x, y)\end{array}\right]$ along C

$$
\int_{C} u(x, y) d x+v(x, y) d y
$$

Example: Consider the oriented curve C defined as the portion of the ellipse

$$
\frac{x^{2}}{9}+\frac{y^{2}}{4}=1
$$

lying in the $y \geq 0$ half-plane oriented clockwise.

We can parameterise the oriented curve C as

$$
\underline{x}(t)=\left[\begin{array}{l}
3 \cos (t) \\
2 \sin (t)
\end{array}\right], \quad t \in[0, \pi]
$$

The importance of what we have shown above is that, if \underline{F} is a (continuous) vector field on \mathbb{R}^{2} then

$$
\int_{C} \underline{F} \cdot d \underline{s} \stackrel{\text { def }}{=} \int_{\underline{x}} \underline{F} \cdot d \underline{s}
$$

is independent of how we parameterise the oriented curve C : we could have parameterised C by the path

$$
\underline{y}(t)=\left[\begin{array}{c}
t \\
\sqrt{4-4 t^{2} / 9}
\end{array}\right], \quad t \in[-3,3]
$$

to compute the vector line integral of \underline{F} along C.
Exercise: Compute

$$
\int_{\underline{x}} \underline{F} \cdot d \underline{s}
$$

where $\underline{F}=\left[\begin{array}{c}y \\ x^{2}\end{array}\right]$. Now, try to compute the same vector line integral of \underline{F} along C using the parameterisation \underline{y} :

$$
\int_{\underline{y}} \underline{F} \cdot d \underline{s}
$$

(This last line integral might be a bit challenging!)

