

April 13 Lecture

TEXTBOOK REFERENCE:

- Vector Calculus, Colley, 4th Edition: §6.1

LINE INTEGRALS

LEARNING OBJECTIVES:

- Understand the definition of a vector line integral.

- Learn how to compute basic vector line integrals.

- Learn the 'independence of path' property for line integrals of conservative vector fields

- Learn the Line Integral Test for non-Conservative Vector Fields

KEYWORDS: vector line integral, closed paths, independence of paths, Line Integral Test for non-Conservative Vector Fields

In the previous lecture we introduced the concept of a scalar line integral: for a continuous function $f: X \subseteq \mathbb{R}^n \to \mathbb{R}$ and a C^1 -path $\underline{x}(t), t \in [a, b]$, we defined the scalar line integral from a to b

$$\int_{\underline{x}} f ds \stackrel{def}{=} \int_{a}^{b} f(\underline{x}(t)) |\underline{x}(t)| dt$$

Remark:

- 1. Recall that a C^1 -path is a differentiable path $\underline{x}(t)$ such that $\underline{x}'(t)$ is continuous.
- 2. We may also define scalar line integrals for a **piecewise** C^1 -**path**: this is a collection of C^1 -paths on \mathbb{R}^n , $(\underline{x}_1(t), \ldots, \underline{x}_k(t))$, with $\underline{x}_i(t)$ defined on domain $[a_i, b_i]$, so that $\underline{x}_i(t) \in X$, for all t, and satisfying

$$\underline{x}_i(b_i) = \underline{x}_{i+1}(a_{i+1}), \quad i = 1, \dots, k-1$$

That is, the endpoint of \underline{x}_i is the startpoint of \underline{x}_{i+1} . Then,

$$\int_{(\underline{x}_1,\dots,\underline{x}_k)} f ds \stackrel{def}{=} \sum_{i=1}^k \int_{\underline{x}_i} f ds$$

For example, consider the piecewise C^1 -path (\underline{x}, y) on \mathbb{R}^2 , where

$$\underline{x}(t) = \begin{bmatrix} -1+t\\t \end{bmatrix}, \quad \underline{y}(t) = \begin{bmatrix} t\\1-t \end{bmatrix}$$

both paths having domain [0, 1].

Then, if f(x, y) = x + y we have

$$\begin{split} \int_{(\underline{x},\underline{y})} fds &= \int_{\underline{x}} fds + \int_{\underline{y}} fds \\ &= \int_{t=0}^{t=1} f(\underline{x}(t)) |\underline{x}'(t)| dt + \int_{t=0}^{t=1} f(\underline{y}(t)) |\underline{y}'(t)| dt \\ &= \int_{0}^{1} (-1+2t) \sqrt{2} dt + \int_{0}^{1} (1-2t) \sqrt{2} dt \\ &= \sqrt{2} \int_{0}^{1} (-1+2t+1-2t) dt = 0 \end{split}$$

Vector line integrals

Now we see how to integrate a vector field along a path. Let \underline{F} be a continuous vector field on \mathbb{R}^n , $\underline{x}(t)$ a C^1 -path in \mathbb{R}^n .

Vector line integrals The vector line integral of \underline{F} along \underline{x} is $\int_{\underline{x}} \underline{F} \cdot d\underline{s} = \int_{a}^{b} \underline{F}(\underline{x}(t)) \cdot \underline{x}'(t) dt$

Example:

1. Let $\underline{F} = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$ and consider the path $\underline{x}(t) = \begin{bmatrix} t \\ 2t^2 \\ t^3 \end{bmatrix}$, $t \in [0, 1]$. We compute the vector line integral of \underline{F} along \underline{x} as follows:

$$\int_{\underline{x}} \underline{F} \cdot d\underline{s} = \int_{t=0}^{t=1} \left(\begin{bmatrix} t \\ 2t^2 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 4t \\ 3t^2 \end{bmatrix} \right) dt$$
$$= \int_0^1 t + 8t^3 + 3t^2 dt$$
$$= \frac{1}{2} + 2 + 1 = \frac{7}{2}$$

2. Let
$$\underline{F} = \begin{bmatrix} e^x \\ y^2 \end{bmatrix}$$
 and $\underline{x}(t) = \begin{bmatrix} t \\ \sin(t) \end{bmatrix}$, $t \in [0, \pi]$. Then, $\underline{x}'(t) = \begin{bmatrix} 1 \\ \cos(t) \end{bmatrix}$ and

$$\int_{\underline{x}} \underline{F} \cdot d\underline{s} = \int_{t=0}^{t=\pi} \underline{F}(\underline{x}(t)) \cdot \underline{x}'(t) dt$$

$$= \int_{0}^{\pi} \begin{bmatrix} e^t \\ \sin^2(t) \end{bmatrix} \cdot \begin{bmatrix} 1 \\ \cos(t) \end{bmatrix} dt$$

$$= \int_{0}^{\pi} \left(e^t + \sin^2(t) \cos(t) \right) dt$$

$$= \left[e^t + \frac{1}{3} \sin^3(t) \right]_{0}^{\pi} = e - 1$$

Remark: We can also define vector line integrals along piecewise C^1 -paths $(\underline{x}_1, \ldots, \underline{x}_k)$

$$\int_{(\underline{x}_1,\dots,\underline{x}_k)} \underline{F} \cdot d\underline{s} \stackrel{def}{=} \sum_{i=1}^k \int_{\underline{x}_i} \underline{F} \cdot d\underline{s}$$

Convention: For the rest of the course we will assume that all vector fields are continuous.

We are going to use vector line integrals to provide a solution to the Potential Function Problem.

Crucial Observation: Let $\underline{F} = \nabla f$ be a conservative vector field. Then, if $\underline{x}(t)$, $t \in [a, b]$, is a (piecewise) C^1 -path then

$$\underline{F}(\underline{x}(t)) \cdot \underline{x}'(t) = \nabla f(\underline{x}(t)) \cdot \underline{x}'(t) = D(f \circ \underline{x})(t) = \frac{d}{dt}(f \circ \underline{x})(t)$$

Hence,

$$\int_{\underline{x}} \underline{F} \cdot d\underline{s} = \int_{a}^{b} \underline{F}(\underline{x}(t)) \cdot \underline{x}'(t) dt = \int_{a}^{b} \frac{d}{dt} (f \circ \underline{x}) dt = f(\underline{x}(a)) - f(\underline{x}(b)) = f(Q) - f(P)$$

where we write $P = \underline{x}(a)$, $Q = \underline{x}(b)$ for the endpoints of \underline{x} . If \underline{y} is **any** other C^1 -path from P to Q then we would also find (exercise!)

$$\int_{\underline{y}} \underline{F} \cdot d\underline{s} = f(Q) - f(P)$$

In particular,

Independence of path

Let \underline{F} be a conservative vector field with domain $X \subset \mathbb{R}^2$. Let $P, Q \in X$ and suppose $\underline{x}, \underline{y}$ are C^1 -paths in X both having start point P and end point Q. Then,

$$\int_{\underline{x}} \underline{F} \cdot d\underline{s} = \int_{\underline{y}} \underline{F} \cdot d\underline{s}$$

We say that a C^1 -path $\underline{x}(t)$, $t \in [a, b]$, is **closed** if $\underline{x}(a) = \underline{x}(b)$. More generally, a piecewise C^1 -path $(\underline{x}_1, \ldots, \underline{x}_k)$ is **closed** if $\underline{x}_1(a_1) = \underline{x}_k(b_k)$ (using notation as in the Remark above).

We have the following consequence for vector line integrals of conservative vector fields along closed C^1 -paths.

Vanishing along closed paths

Let \underline{F} be a conservative vector field with domain $X \subseteq \mathbb{R}^2$. Let \underline{x} be a closed C^1 -path in X. Then,

$$\int_{\underline{x}} \underline{F} \cdot d\underline{s} = 0$$

In particular,

Line Integral Test for non-Conservative Vector Fields

Let \underline{F} be a vector field with domain $X \subseteq \mathbb{R}^2$. If there exists a closed C^1 -path $\underline{x}(t)$ in X such that the vector line integral of \underline{F} along \underline{x} is nonzero then \underline{F} is not conservative on X.

Remark: Analogous results hold for vector fields defined on $X \subset \mathbb{R}^n$.

Example: Consider the vector field

$$\underline{F} = \begin{bmatrix} -\frac{y}{x^2 + y^2} \\ \frac{x}{x^2 + y^2} \end{bmatrix}$$

and consider the closed C^1 -path

$$\underline{x}(t) = \begin{bmatrix} \cos(t) \\ \sin(t) \end{bmatrix}, \quad t \in [0, 2\pi]$$

Then,

$$\int_{\underline{x}} \underline{F} \cdot d\underline{s} = \int_{t=0}^{t=2\pi} \begin{bmatrix} -\sin(t) \\ \cos(t) \end{bmatrix} \cdot \begin{bmatrix} -\sin(t) \\ \cos(t) \end{bmatrix} dt$$
$$= \int_{0}^{2\pi} dt = 2\pi \neq 0$$

Therefore, \underline{F} is **not conservative**!.