

April 11 Lecture

LINE INTEGRALS

LEARNING OBJECTIVES:

- Understand the definition of a scalar line integral.
- Understand the definition of a vector line integral.
- Learn how to compute basic line integrals.

In our last lecture we saw the following result:

Local existence of potential functions

Let $\underline{F}: X \subset \mathbb{R}^2 \to \mathbb{R}^2$ be vector field on \mathbb{R}^2 , and write $\underline{F}(x, y) = \begin{vmatrix} u(x, y) \\ v(x, y) \end{vmatrix}$.

Suppose that

- X is either the whole plane, an open rectangle or an open disc,
- *u*, *v* have continuous partial derivatives,

•
$$\frac{\partial u}{\partial y} = \frac{\partial v}{\partial x}.$$

Then, there exists a differentiable function $f:X\subset \mathbb{R}^2\to \mathbb{R}$ such that $\nabla f=\underline{F}.$

Today we introduce an essential tool that we will use in order to understand how we can determine the Potential Function Problem for vector fields \underline{F} on arbitrary domains X - this is the notion of a **line integral**. We will see several types of line integral - **scalar line integrals** and **vector line integrals**. These integrals will require understanding a formula for **length of a path** $\underline{x}(t)$.

Remark: Line integrals are also called **path integrals**, **curve integrals**, or **contour integrals**.

Length of differentiable paths

Let $\underline{x} : I \subseteq \mathbb{R} \to \mathbb{R}^n$ be a differentiable path in \mathbb{R}^n and assume that $\underline{x}'(t)$ is continuous. For $a, b \in I$, a < b, we define the **length of** $\underline{x}(t)$ **between** t = a **and** t = b to be

$$\int_{t=a}^{t=b} |\underline{x}'(t)| dt$$

Remark: Differentiable paths $\underline{x}(t)$ on \mathbb{R}^n such that $\underline{x}'(t)$ is continuous will be called C^1 -paths.

Example:

1. Let $\underline{x}(t) = \begin{bmatrix} 1+t\\ 2-t\\ 3t \end{bmatrix}$, $t \in \mathbb{R}$, be the straight line parallel to $\begin{bmatrix} 1\\ -1\\ 3 \end{bmatrix}$ passing through (1, 2, 0). The length of $\underline{x}(t)$ between t = 0 to t = 2 is

$$\int_0^2 |\underline{x}'(t)| dt = \int_0^2 \sqrt{1^2 + (-1)^2 + 3^2} dt$$
$$= \sqrt{11} \int_0^2 dt = 2\sqrt{11}$$

You can check (exercise!) that this is the length of the line segment between $P = \underline{x}(0) = (1, 2, 0)$ and $Q = \underline{x}(2) = (3, 0, 6)$.

In general, if $\underline{x}(t) = P + t\underline{v}$ is a line with direction vector \underline{v} then the length of $\underline{x}(t)$ from t = a to t = b is $(b - a)|\underline{v}|$. This is equal to the length of the line segment from $\underline{x}(a)$ to $\underline{x}(b)$.

2. Let $\underline{x}(t) = \begin{bmatrix} t \\ f(t) \end{bmatrix}$, $t \in I$, where f(t) is a differentiable function whose derivative is continuous. Then, the image curve of $\underline{x}(t)$ is the graph of f. We compute the length of \underline{x} between t = a and t = b to be

$$\int_{a}^{b} |\underline{x}'(t)| dt = \int_{a}^{b} \sqrt{1 + (f'(t))^2} dt$$

This is the arc length formula from Calculus II.

3. Let $\underline{x}(t) = \begin{bmatrix} \cos(t) \\ \sin(t) \end{bmatrix}$, $t \in [0, 2\pi]$. The image curve of $\underline{x}(t)$ is the unit circle centred at the origin. Then, the length of $\underline{x}(t)$ between t = 0 and $t = 2\pi$ is

$$\int_0^{2\pi} |\underline{x}'(t)| dt = \int_0^{2\pi} \sqrt{(-\sin(t))^2 + (\cos(t))^2} dt = \int_0^{2\pi} dt = 2\pi$$

Observation: in each of the examples above the arc length formula is computing the length of the image curve of $\underline{x}(t)$ between $\underline{x}(a)$ and $\underline{x}(b)$. In general,

the length formula computes the length of the curve traced out by $\underline{x}(t)$ between $\underline{x}(a)$ and $\underline{x}(b)$.

Remark: The length formula is derived as follows when $\underline{x}(t) = \begin{bmatrix} x(t) \\ y(t) \\ z(t) \end{bmatrix}$ is a differ-

entiable path in \mathbb{R}^3 : consider a partition $a = t_0 < t_1 < \ldots < t_n = \overline{b}$. Then, summing the lengths of the line segments L_i , $i = 1, \ldots, n$ between $\underline{x}(t_{i-1})$ and $\underline{x}(t_i)$ gives an approximation

$$s = \sum_{i=1}^{n} |\overrightarrow{\underline{x}(t_{i-1})\underline{x}(t_i)}| = \sum_{i=1}^{n} \sqrt{(x(t_i) - x(t_{i-1}))^2 + (y(t_i) - y(t_{i-1}))^2 + (z(t_i) - z(t_{i-1}))^2}$$

to the length of $\underline{x}(t)$ between t = a and t = b.

Apply the Mean Value Theorem (three times) to find $a_i \in [x(t_{i-1}), x(t_i)], b_i \in [y(t_{i-1}), y(t_i)], c_i \in [z(t_{i-1}), z(t_i)]$ so that

$$x'(a_i) = \frac{x(t_i) - x(t_{i-1})}{t_i - t_{i-1}}, \quad y'(b_i) = \frac{y(t_i) - y(t_{i-1})}{t_i - t_{i-1}}, \quad z'(c_i) = \frac{z(t_i) - z(t_{i-1})}{t_i - t_{i-1}}$$

Write $\Delta t_i = t_i - t_{i-1}$. Thus,

$$s = \sum_{i=1}^{n} \sqrt{(x'(a_i))^2 + (y'(b_i))^2 + (z'(c_i))^2} \Delta t_i$$

Then, the length of $\underline{x}(t)$ between t = a and t = b is

$$\lim_{\max \Delta t_i \to 0} \sum_{i=1}^n \sqrt{(x'(a_i))^2 + (y'(b_i))^2 + (z'(c_i))^2} \Delta t_i$$
$$= \int_a^b \sqrt{(x'(t))^2 + (y'(t))^2 + (z'(t))^2} dt = \int_a^b |\underline{x}'(t)| dt$$

A similar argument can be used for differentiable paths in \mathbb{R}^n .

Scalar line integrals

Let $f: X \subseteq \mathbb{R}^n \to \mathbb{R}$ be a continuous function and $\underline{x}(t): [a, b] \to \mathbb{R}^n$ a C^1 -path.

Scalar line integrals The scalar line integral of f along \underline{x} is $\int_{a}^{b} f(\underline{x}(t)) |\underline{x}'(t)| dt$ We also write $\int_{\underline{x}} f ds$

Intepretation: Suppose that $\underline{x}(t) = \begin{bmatrix} \cos(t) \\ \sin(t) \\ t \end{bmatrix}$, $t \in [a, b]$, is a C^1 -path modelling a piece of metal coil. Let f(x, y, z) be a density function for the coil. Then, $\int_{\underline{x}} f ds$ determines the total mass of the metal coil.

Example:

1. Let $\underline{x}(t) = \begin{bmatrix} 1+t\\ 2-t\\ 3t \end{bmatrix}$, $t \in [0,2]$, be the line segment from above, and let f(x,y,z) = z. Then,

$$\int_{\underline{x}} f ds = \int_{t=0}^{t=2} f(\underline{x}(t)) |\underline{x}'(t)| dt$$
$$= \int_{0}^{2} 3t \sqrt{11} dt = 6\sqrt{11}$$

2. Let
$$\underline{x}(t) = \begin{bmatrix} \cos(t) \\ \sin(t) \\ t \end{bmatrix}$$
, $t \in [0, \pi]$, and let $f(x, y, z) = 2xy$. Then,
$$\int_{\underline{x}} f ds = \int_{t=0}^{t=\pi} f(\underline{x}(t)) |\underline{x}'(t)| dt$$
$$= \int_{0}^{\pi} 2\sin(t)\cos(t)\sqrt{\cos^{2}(t) + \sin^{2}(t) + 1} dt$$
$$= \sqrt{2} \int_{0}^{\pi} \sin(2t) dt = \frac{1}{\sqrt{2}} [-\cos(2t)]_{0}^{\pi} = \frac{1}{\sqrt{2}} (1-1) = 0$$

Vector line integrals

Now we see how to integrate a vector field along a path. Let \underline{F} be a vector field on \mathbb{R}^n , $\underline{x}(t)$ a C^1 -path in \mathbb{R}^n .

Vector line integrals

The vector line integral of \underline{F} along \underline{x} is

$$\int_{\underline{x}} \underline{F} \cdot d\underline{s} = \int_{a}^{b} \underline{F}(\underline{x}(t)) \cdot \underline{x}'(t) dt$$

Example: Let $\underline{F} = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$ and consider the path $\underline{x}(t) = \begin{bmatrix} t \\ 2t^2 \\ t^3 \end{bmatrix}$, $t \in [0, 1]$. We compute the vector line integral of \underline{F} along \underline{x} as follows:

$$\int_{\underline{x}} \underline{F} \cdot d\underline{s} = \int_{t=0}^{t=1} \left(\begin{bmatrix} t \\ 2t^2 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 4t \\ 3t^2 \end{bmatrix} \right) dt$$
$$= \int_0^1 t + 8t^3 + 3t^2 dt$$
$$= \frac{1}{2} + 2 + 1 = \frac{7}{2}$$