April 11 Lecture

Line Integrals

Learning Objectives:

- Understand the definition of a scalar line integral.
- Understand the definition of a vector line integral.
- Learn how to compute basic line integrals.

In our last lecture we saw the following result:

Local existence of potential functions

Let $\underline{F}: X \subset \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be vector field on \mathbb{R}^{2}, and write $\underline{F}(x, y)=\left[\begin{array}{l}u(x, y) \\ v(x, y)\end{array}\right]$.
Suppose that

- X is either the whole plane, an open rectangle or an open disc,
- u, v have continuous partial derivatives,
- $\frac{\partial u}{\partial y}=\frac{\partial v}{\partial x}$.

Then, there exists a differentiable function $f: X \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ such that $\nabla f=\underline{F}$.

Today we introduce an essential tool that we will use in order to understand how we can determine the Potential Function Problem for vector fields \underline{F} on arbitrary domains X - this is the notion of a line integral. We will see several types of line integral - scalar line integrals and vector line integrals. These integrals will require understanding a formula for length of a path $\underline{x}(t)$.
Remark: Line integrals are also called path integrals, curve integrals, or contour integrals.

Length of differentiable paths

Let $\underline{x}: I \subseteq \mathbb{R} \rightarrow \mathbb{R}^{n}$ be a differentiable path in \mathbb{R}^{n} and assume that $\underline{x}^{\prime}(t)$ is continuous. For $a, b \in I, a<b$, we define the length of $\underline{x}(t)$ between $t=a$ and $t=b$ to be

$$
\int_{t=a}^{t=b}\left|\underline{x}^{\prime}(t)\right| d t
$$

Remark: Differentiable paths $\underline{x}(t)$ on \mathbb{R}^{n} such that $\underline{x}^{\prime}(t)$ is continuous will be called C^{1}-paths.

Example:

1. Let $\underline{x}(t)=\left[\begin{array}{c}1+t \\ 2-t \\ 3 t\end{array}\right], t \in \mathbb{R}$, be the straight line parallel to $\left[\begin{array}{c}1 \\ -1 \\ 3\end{array}\right]$ passing through $(1,2,0)$. The length of $\underline{x}(t)$ between $t=0$ to $t=2$ is

$$
\begin{aligned}
\int_{0}^{2}\left|\underline{x}^{\prime}(t)\right| d t & =\int_{0}^{2} \sqrt{1^{2}+(-1)^{2}+3^{2}} d t \\
& =\sqrt{11} \int_{0}^{2} d t=2 \sqrt{11}
\end{aligned}
$$

You can check (exercise!) that this is the length of the line segment between $P=\underline{x}(0)=(1,2,0)$ and $Q=\underline{x}(2)=(3,0,6)$.
In general, if $\underline{x}(t)=P+t \underline{v}$ is a line with direction vector \underline{v} then the length of $\underline{x}(t)$ from $t=a$ to $t=b$ is $(b-a)|\underline{v}|$. This is equal to the length of the line segment from $\underline{x}(a)$ to $\underline{x}(b)$.
2. Let $\underline{x}(t)=\left[\begin{array}{c}t \\ f(t)\end{array}\right], t \in I$, where $f(t)$ is a differentiable function whose derivative is continuous. Then, the image curve of $\underline{x}(t)$ is the graph of f. We compute the length of \underline{x} between $t=a$ and $t=b$ to be

$$
\int_{a}^{b}\left|\underline{x}^{\prime}(t)\right| d t=\int_{a}^{b} \sqrt{1+\left(f^{\prime}(t)\right)^{2}} d t
$$

This is the arc length formula from Calculus II.
3. Let $\underline{x}(t)=\left[\begin{array}{l}\cos (t) \\ \sin (t)\end{array}\right], t \in[0,2 \pi]$. The image curve of $\underline{x}(t)$ is the unit circle centred at the origin. Then, the length of $\underline{x}(t)$ between $t=0$ and $t=2 \pi$ is

$$
\int_{0}^{2 \pi}\left|\underline{x}^{\prime}(t)\right| d t=\int_{0}^{2 \pi} \sqrt{(-\sin (t))^{2}+(\cos (t))^{2}} d t=\int_{0}^{2 \pi} d t=2 \pi
$$

Observation: in each of the examples above the arc length formula is computing the length of the image curve of $\underline{x}(t)$ between $\underline{x}(a)$ and $\underline{x}(b)$. In general,

the length formula computes the length of the curve traced out by

 $\underline{x}(t)$ between $\underline{x}(a)$ and $\underline{x}(b)$.Remark: The length formula is derived as follows when $\underline{x}(t)=\left[\begin{array}{l}x(t) \\ y(t) \\ z(t)\end{array}\right]$ is a differentiable path in \mathbb{R}^{3} : consider a partition $a=t_{0}<t_{1}<\ldots<t_{n}=b$. Then, summing the lengths of the line segments $L_{i}, i=1, \ldots, n$ between $\underline{x}\left(t_{i-1}\right)$ and $\underline{x}\left(t_{i}\right)$ gives an approximation
$s=\sum_{i=1}^{n}\left|\underline{\underline{x}\left(t_{i-1}\right) \underline{x}\left(t_{i}\right)}\right|=\sum_{i=1}^{n} \sqrt{\left(x\left(t_{i}\right)-x\left(t_{i-1}\right)\right)^{2}+\left(y\left(t_{i}\right)-y\left(t_{i-1}\right)\right)^{2}+\left(z\left(t_{i}\right)-z\left(t_{i-1}\right)\right)^{2}}$
to the length of $\underline{x}(t)$ between $t=a$ and $t=b$.
Apply the Mean Value Theorem (three times) to find $a_{i} \in\left[x\left(t_{i-1}\right), x\left(t_{i}\right)\right], b_{i} \in$ $\left[y\left(t_{i-1}\right), y\left(t_{i}\right)\right], c_{i} \in\left[z\left(t_{i-1}\right), z\left(t_{i}\right)\right]$ so that

$$
x^{\prime}\left(a_{i}\right)=\frac{x\left(t_{i}\right)-x\left(t_{i-1}\right)}{t_{i}-t_{i-1}}, \quad y^{\prime}\left(b_{i}\right)=\frac{y\left(t_{i}\right)-y\left(t_{i-1}\right)}{t_{i}-t_{i-1}}, \quad z^{\prime}\left(c_{i}\right)=\frac{z\left(t_{i}\right)-z\left(t_{i-1}\right)}{t_{i}-t_{i-1}}
$$

Write $\Delta t_{i}=t_{i}-t_{i-1}$. Thus,

$$
s=\sum_{i=1}^{n} \sqrt{\left(x^{\prime}\left(a_{i}\right)\right)^{2}+\left(y^{\prime}\left(b_{i}\right)\right)^{2}+\left(z^{\prime}\left(c_{i}\right)\right)^{2}} \Delta t_{i}
$$

Then, the length of $\underline{x}(t)$ between $t=a$ and $t=b$ is

$$
\begin{aligned}
& \lim _{\max \Delta t_{i} \rightarrow 0} \sum_{i=1}^{n} \sqrt{\left(x^{\prime}\left(a_{i}\right)\right)^{2}+\left(y^{\prime}\left(b_{i}\right)\right)^{2}+\left(z^{\prime}\left(c_{i}\right)\right)^{2}} \Delta t_{i} \\
= & \int_{a}^{b} \sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}+\left(z^{\prime}(t)\right)^{2}} d t=\int_{a}^{b}\left|\underline{x}^{\prime}(t)\right| d t
\end{aligned}
$$

A similar argument can be used for differentiable paths in \mathbb{R}^{n}.

Scalar line integrals

Let $f: X \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a continuous function and $\underline{x}(t):[a, b] \rightarrow \mathbb{R}^{n}$ a C^{1}-path.

Scalar line integrals

The scalar line integral of f along \underline{x} is

$$
\int_{a}^{b} f(\underline{x}(t))\left|\underline{x}^{\prime}(t)\right| d t
$$

We also write

$$
\int_{\underline{x}} f d s
$$

Intepretation: Suppose that $\underline{x}(t)=\left[\begin{array}{c}\cos (t) \\ \sin (t) \\ t\end{array}\right], t \in[a, b]$, is a C^{1}-path modelling a piece of metal coil. Let $f(x, y, z)$ be a density function for the coil. Then, $\int_{\underline{x}} f d s$ determines the total mass of the metal coil.

Example:

1. Let $\underline{x}(t)=\left[\begin{array}{c}1+t \\ 2-t \\ 3 t\end{array}\right], t \in[0,2]$, be the line segment from above, and let $f(x, y, z)=z$. Then,

$$
\begin{aligned}
\int_{\underline{x}} f d s & =\int_{t=0}^{t=2} f(\underline{x}(t))\left|\underline{x}^{\prime}(t)\right| d t \\
& =\int_{0}^{2} 3 t \sqrt{11} d t=6 \sqrt{11}
\end{aligned}
$$

2. Let $\underline{x}(t)=\left[\begin{array}{c}\cos (t) \\ \sin (t) \\ t\end{array}\right], t \in[0, \pi]$, and let $f(x, y, z)=2 x y$. Then,

$$
\begin{aligned}
\int_{\underline{x}} f d s & =\int_{t=0}^{t=\pi} f(\underline{x}(t))\left|\underline{x}^{\prime}(t)\right| d t \\
& =\int_{0}^{\pi} 2 \sin (t) \cos (t) \sqrt{\cos ^{2}(t)+\sin ^{2}(t)+1} d t \\
& =\sqrt{2} \int_{0}^{\pi} \sin (2 t) d t=\frac{1}{\sqrt{2}}[-\cos (2 t)]_{0}^{\pi}=\frac{1}{\sqrt{2}}(1-1)=0
\end{aligned}
$$

Vector line integrals

Now we see how to integrate a vector field along a path. Let \underline{F} be a vector field on $\mathbb{R}^{n}, \underline{x}(t)$ a C^{1}-path in \mathbb{R}^{n}.

Vector line integrals

The vector line integral of \underline{F} along \underline{x} is

$$
\int_{\underline{x}} \underline{F} \cdot d \underline{s}=\int_{a}^{b} \underline{F}(\underline{x}(t)) \cdot \underline{x}^{\prime}(t) d t
$$

Example: Let $\underline{F}=\left[\begin{array}{l}x \\ y \\ 1\end{array}\right]$ and consider the path $\underline{x}(t)=\left[\begin{array}{c}t \\ 2 t^{2} \\ t^{3}\end{array}\right], t \in[0,1]$. We compute the vector line integral of \underline{F} along \underline{x} as follows:

$$
\begin{aligned}
\int_{\underline{x}} \underline{F} \cdot d \underline{s} & =\int_{t=0}^{t=1}\left(\left[\begin{array}{c}
t \\
2 t^{2} \\
1
\end{array}\right] \cdot\left[\begin{array}{c}
1 \\
4 t \\
3 t^{2}
\end{array}\right]\right) d t \\
& =\int_{0}^{1} t+8 t^{3}+3 t^{2} d t \\
& =\frac{1}{2}+2+1=\frac{7}{2}
\end{aligned}
$$

