
Multivariable Calculus
Spring 2018

Contact: gmelvin@middlebury.edu

April 11 Lecture

Line Integrals

Learning Objectives:
- Understand the definition of a scalar line integral.
- Understand the definition of a vector line integral.
- Learn how to compute basic line integrals.

In our last lecture we saw the following result:

Local existence of potential functions

Let F : X ⊂ R2 → R2 be vector field on R2, and write F (x, y) =

u(x, y)

v(x, y)

.

Suppose that

• X is either the whole plane, an open rectangle or an open disc,

• u, v have continuous partial derivatives,

• ∂u
∂y

= ∂v
∂x

.

Then, there exists a differentiable function f : X ⊂ R2 → R such that
∇f = F .

Today we introduce an essential tool that we will use in order to understand how
we can determine the Potential Function Problem for vector fields F on arbitrary
domains X - this is the notion of a line integral. We will see several types of line
integral - scalar line integrals and vector line integrals. These integrals will
require understanding a formula for length of a path x(t).

Remark: Line integrals are also called path integrals, curve integrals, or con-
tour integrals.

Length of differentiable paths
Let x : I ⊆ R→ Rn be a differentiable path in Rn and assume that x′(t) is continuous.
For a, b ∈ I, a < b, we define the length of x(t) between t = a and t = b to be∫ t=b

t=a

|x′(t)|dt

Remark: Differentiable paths x(t) on Rn such that x′(t) is continuous will be called
C1-paths.
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Example:

1. Let x(t) =

1 + t
2− t

3t

, t ∈ R, be the straight line parallel to

 1
−1
3

 passing

through (1, 2, 0). The length of x(t) between t = 0 to t = 2 is∫ 2

0

|x′(t)|dt =

∫ 2

0

√
12 + (−1)2 + 32dt

=
√

11

∫ 2

0

dt = 2
√

11

You can check (exercise!) that this is the length of the line segment between
P = x(0) = (1, 2, 0) and Q = x(2) = (3, 0, 6).

In general, if x(t) = P + tv is a line with direction vector v then the length of
x(t) from t = a to t = b is (b − a)|v|. This is equal to the length of the line
segment from x(a) to x(b).

2. Let x(t) =

[
t

f(t)

]
, t ∈ I, where f(t) is a differentiable function whose derivative

is continuous. Then, the image curve of x(t) is the graph of f . We compute
the length of x between t = a and t = b to be∫ b

a

|x′(t)|dt =

∫ b

a

√
1 + (f ′(t))2dt

This is the arc length formula from Calculus II.

3. Let x(t) =

[
cos(t)
sin(t)

]
, t ∈ [0, 2π]. The image curve of x(t) is the unit circle

centred at the origin. Then, the length of x(t) between t = 0 and t = 2π is∫ 2π

0

|x′(t)|dt =

∫ 2π

0

√
(− sin(t))2 + (cos(t))2dt =

∫ 2π

0

dt = 2π

Observation: in each of the examples above the arc length formula is computing
the length of the image curve of x(t) between x(a) and x(b). In general,

the length formula computes the length of the curve traced out by
x(t) between x(a) and x(b).

Remark: The length formula is derived as follows when x(t) =

x(t)
y(t)
z(t)

 is a differ-

entiable path in R3: consider a partition a = t0 < t1 < . . . < tn = b. Then, summing
the lengths of the line segments Li, i = 1, . . . , n between x(ti−1) and x(ti) gives an
approximation

s =
n∑
i=1

|
−−−−−−−→
x(ti−1)x(ti)| =

n∑
i=1

√
(x(ti)− x(ti−1))2 + (y(ti)− y(ti−1))2 + (z(ti)− z(ti−1))2
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to the length of x(t) between t = a and t = b.

Apply the Mean Value Theorem (three times) to find ai ∈ [x(ti−1), x(ti)], bi ∈
[y(ti−1), y(ti)], ci ∈ [z(ti−1), z(ti)] so that

x′(ai) =
x(ti)− x(ti−1)

ti − ti−1

, y′(bi) =
y(ti)− y(ti−1)

ti − ti−1

, z′(ci) =
z(ti)− z(ti−1)

ti − ti−1

Write ∆ti = ti − ti−1. Thus,

s =
n∑
i=1

√
(x′(ai))2 + (y′(bi))2 + (z′(ci))2∆ti

Then, the length of x(t) between t = a and t = b is

lim
max ∆ti → 0

n∑
i=1

√
(x′(ai))2 + (y′(bi))2 + (z′(ci))2∆ti

=

∫ b

a

√
(x′(t))2 + (y′(t))2 + (z′(t))2dt =

∫ b

a

|x′(t)|dt

A similar argument can be used for differentiable paths in Rn.
Scalar line integrals

Let f : X ⊆ Rn → R be a continuous function and x(t) : [a, b]→ Rn a C1-path.

Scalar line integrals

The scalar line integral of f along x is∫ b

a

f(x(t))|x′(t)|dt

We also write ∫
x

fds

Intepretation: Suppose that x(t) =

cos(t)
sin(t)
t

, t ∈ [a, b], is a C1-path modelling a

piece of metal coil. Let f(x, y, z) be a density function for the coil. Then,
∫
x
fds

determines the total mass of the metal coil.
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Example:

1. Let x(t) =

1 + t
2− t

3t

, t ∈ [0, 2], be the line segment from above, and let

f(x, y, z) = z. Then, ∫
x

fds =

∫ t=2

t=0

f(x(t))|x′(t)|dt

=

∫ 2

0

3t
√

11dt = 6
√

11

2. Let x(t) =

cos(t)
sin(t)
t

, t ∈ [0, π], and let f(x, y, z) = 2xy. Then,

∫
x

fds =

∫ t=π

t=0

f(x(t))|x′(t)|dt

=

∫ π

0

2 sin(t) cos(t)
√

cos2(t) + sin2(t) + 1dt

=
√

2

∫ π

0

sin(2t)dt =
1√
2

[− cos(2t)]π0 =
1√
2

(1− 1) = 0

Vector line integrals
Now we see how to integrate a vector field along a path. Let F be a vector field on
Rn, x(t) a C1-path in Rn.

Vector line integrals

The vector line integral of F along x is∫
x

F · ds =

∫ b

a

F (x(t)) · x′(t)dt

Example: Let F =

xy
1

 and consider the path x(t) =

 t
2t2

t3

, t ∈ [0, 1]. We compute

the vector line integral of F along x as follows:

∫
x

F · ds =

∫ t=1

t=0

 t
2t2

1

 ·
 1

4t
3t2

 dt

=

∫ 1

0

t+ 8t3 + 3t2dt

=
1

2
+ 2 + 1 =

7

2
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