September 7 Summary

Supplementary References:

- Multivariable Calculus..., Ostebee-Zorn, Section 11.1

KEYWORDS: sequences, increasing/decreasing, bounded above/below, bounded, convergent, limit, Squeeze Theorem

SEquences

- A sequence is an infinite list of real numbers; a_{n} is the $n^{\text {th }}$ term. Denoted $\left\{a_{n}\right\}_{n=1}^{\infty}$ or, simply, $\left\{a_{n}\right\}$.
- Sequences can be defined using formulae or in words:

1. $a_{n}=n^{2}: 1,4,9,16,25, \ldots$
2. $a_{n}=\cos (\pi / n):-1,0,1 / 2,1 / \sqrt{2}, 0.809 \ldots, \sqrt{3} 2, \ldots$
3. $a_{n}=(-1)^{n}:-1,1,-1,1,-1,1,-1, \ldots$
4. $a_{n}=n^{\text {th }}$ prime number: $2,3,5,7,11,13,17,19,23, \ldots$
5. $a_{n}=n^{\text {th }}$ digit of $\pi: 1,4,1,5,9,2,6,5, \ldots$

Representing sequences: lists or graphs e.g. $\left\{a_{n}\right\}_{n=1}^{\infty}, a_{n}=1 / n$
LIST: $1,1 / 2,1 / 3,1 / 4, \ldots$
GRAPH (very important!):

This is the graph of a function $f(n)=a_{n}$, having inputs n being positive integers
Describing sequences
Say a sequence $\left\{a_{n}\right\}$ is:

- bounded above if there is a real number M (called an upper bound) satisfying

$$
a_{n} \leq M, \quad \text { for every } n=1,2,3, \ldots
$$

i.e. $a_{1} \leq M$ and $a_{2} \leq M$ and $a_{3} \leq M$ etc.

- bounded below if there is a real number m (called a lower bound) satisfying

$$
m \leq a_{n}, \quad \text { for every } n=1,2,3, \ldots
$$

i.e. $m \leq a_{1}$ and $m \leq a_{2}$ and $m \leq a_{3}$ etc.

- bounded if both bounded above and bounded below; unbounded if not bounded.
- nondecreasing if $a_{1} \leq a_{2} \leq a_{3} \leq a_{4} \leq a_{5} \leq \ldots$
- nonincreasing if $a_{1} \geq a_{2} \geq a_{3} \geq a_{4} \geq a_{5} \geq \ldots$
- monotone if either nonincreasing or nondecreasing.

Examples (from above):

1. Bounded below (by $m=0$, say) nondecreasing, not bounded above
2. Bounded $(-1 \leq \cos (\pi / n) \leq 1$, for all $n=1,2,3, \ldots)$, nondecreasing

3. Bounded ($-1 \leq a_{n} \leq 1$, for every $n=1,2,3, \ldots$), not monotone (neither nondecreasing nor nonincreasing)
4. Nondecreasing, bounded below, not bounded above
5. Bounded ($0 \leq a_{n} \leq 9$, for every $n=1,2,3 \ldots$), not monotone.

Behaviour 'at infinity'

Q: What's the limiting behaviour of $\left\{a_{n}\right\}$ when we let n get very large? i.e. what happens far to the right in the graph?

- Say $\left\{a_{n}\right\}$ converges to the real number L if $y=L$ is a horizontal asymptote of the graph. In this case, write $L=\lim _{n \rightarrow \infty} a_{n}$ and say $\left\{a_{n}\right\}$ converges to L or, simply, $\left\{a_{n}\right\}$ is convergent. If the graph of $\left\{a_{n}\right\}$ does not possess a horizontal asymptote then say $\left\{a_{n}\right\}$ diverges.
- Remark: the rigorous mathematical definition of convergence will be investigated in Homework 1.

Important Examples:

a) $\lim _{n \rightarrow \infty} \frac{1}{n}=0$,
b) Let x be a real number. Then,

$$
\lim _{n \rightarrow \infty} x^{n}= \begin{cases}0, & -1<x \leq 1 \\ 1, & x=1\end{cases}
$$

If $x \leq-1$ or $x>1$ then $1, x, x^{2}, x^{3}, \ldots$ is divergent.

- Important: divergent $=$ not convergent
- If $\left\{a_{n}\right\}$ increases/decreases without bound then $\left\{a_{n}\right\}$ is divergent to $\pm \infty$. Write (confusingly) $\lim _{n \rightarrow \infty} a_{n}= \pm \infty$.

1. Diverges to $+\infty, \lim _{n \rightarrow \infty} n^{2}=+\infty$
2. Converges to $L=1$. Note: there's no n so that $\cos (\pi / n)=1$; but the sequence approaches $L=1$ as n gets very large.

3. Divergent.

4. Diverges to $+\infty$ (this relies on the following Theorem (originally due to Euclid): there are an infinite number of primes)
5. Diverges: this is because π is irrational (though this fact is non-obvious, neither is why this implies the sequence is divergent).

Limit Laws: Let $\left\{a_{n}\right\},\left\{b_{n}\right\}$ be convergent sequences. Let c be a constant.

- $\lim _{n \rightarrow \infty}\left(a_{n}+b_{n}\right)=\lim _{n \rightarrow \infty} a_{n}+\lim _{n \rightarrow \infty} b_{n}$ i.e. the sum of convergent sequences is convergent
- $\lim _{n \rightarrow \infty} c a_{n}=c\left(\lim _{n \rightarrow \infty} a_{n}\right)$
- $\lim _{n \rightarrow \infty} a_{n} b_{n}=\left(\lim _{n \rightarrow \infty} a_{n}\right)\left(\lim _{n \rightarrow \infty} b_{n}\right)$ i.e. product of convergent sequences is convergent
- $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\frac{\lim _{n \rightarrow \infty} a_{n}}{\lim _{n \rightarrow \infty} b_{n}}$ provided $\lim _{n \rightarrow \infty} b_{n} \neq 0$
- $\lim _{n \rightarrow \infty} a_{n}^{r}=\left(\lim _{n \rightarrow \infty} a_{n}\right)^{r}$, provided $a_{n} \geq 0$

Determining limits/convergence: (HARD, in general)

Squeeze Theorem

Let $\left\{a_{n}\right\}$ be a sequence. Suppose there are convergent sequences $\left\{b_{n}\right\}$ and $\left\{c_{n}\right\}$ satisfying

- $c_{n} \leq a_{n} \leq b_{n}$, for every $n=1,2,3, \ldots$, and
- $\lim _{n \rightarrow \infty} c_{n}=\lim _{n \rightarrow \infty} b_{n}=L$

Then, $\left\{a_{n}\right\}$ is convergent and $L=\lim _{n \rightarrow \infty} a_{n}$.

Example:

1. Let $a_{n}=\frac{(-1)^{n}}{n}, b_{n}=\frac{1}{n}, c_{n}=-\frac{1}{n}$. Then, $\lim _{n \rightarrow \infty} c_{n}=\lim _{n \rightarrow \infty} b_{n}=0$ and $c_{n} \leq a_{n} \leq$ b_{n}. Hence, $\left\{a_{n}\right\}$ is convergent, by the Squeeze Theorem, and $\lim _{n \rightarrow \infty} a_{n}=0$.

2. Let $a_{n}=\sin (n) / n$. Let $b_{n}=1 / n, c_{n}=-1 / n$. Then, $c_{n} \leq a_{n} \leq b_{n}$ (since $-1 \leq$ $\sin (n) \leq 1)$ and $\lim _{n \rightarrow \infty} c_{n}=\lim _{n \rightarrow \infty} b_{n}=0$. Hence, $\left\{a_{n}\right\}$ is convergent, by the Squeeze Theorem, and $\lim _{n \rightarrow \infty} a_{n}=0$.
