

Math 122C: Series & Multivariable Calculus Fall 2018

Contact: gwmelvin@colby.edu

September 7 Summary

SUPPLEMENTARY REFERENCES:

- Multivariable Calculus..., Ostebee-Zorn, Section 11.1

KEYWORDS: sequences, increasing/decreasing, bounded above/below, bounded, convergent, limit, Squeeze Theorem

SEQUENCES

• A sequence is an infinite list of real numbers; a_n is the n^{th} term. Denoted $\{a_n\}_{n=1}^{\infty}$ or, simply, $\{a_n\}$.

• Sequences can be defined using **formulae** or **in words**:

1.
$$a_n = n^2$$
: 1, 4, 9, 16, 25, ...

- 2. $a_n = \cos(\pi/n): -1, 0, 1/2, 1/\sqrt{2}, 0.809..., \sqrt{32}, ...$
- 3. $a_n = (-1)^n$: -1, 1, -1, 1, -1, 1, -1, ...
- 4. $a_n = n^{th}$ prime number: 2, 3, 5, 7, 11, 13, 17, 19, 23, ...
- 5. $a_n = n^{th}$ digit of π : 1, 4, 1, 5, 9, 2, 6, 5, ...

Representing sequences: lists or graphs e.g. $\{a_n\}_{n=1}^{\infty}$, $a_n = 1/n$

LIST: $1, 1/2, 1/3, 1/4, \ldots$

GRAPH (very important!):

This is the graph of a function $f(n) = a_n$, having inputs n being positive integers Describing sequences

Say a sequence $\{a_n\}$ is:

• bounded above if there is a real number M (called an **upper bound**) satisfying

$$a_n \leq M$$
, for every $n = 1, 2, 3, \ldots$

i.e. $a_1 \leq M$ and $a_2 \leq M$ and $a_3 \leq M$ etc.

• bounded below if there is a real number m (called a lower bound) satisfying

$$m \leq a_n$$
, for every $n = 1, 2, 3, \ldots$

i.e. $m \leq a_1$ and $m \leq a_2$ and $m \leq a_3$ etc.

- bounded if both bounded above and bounded below; unbounded if not bounded.
- nondecreasing if $a_1 \le a_2 \le a_3 \le a_4 \le a_5 \le \dots$
- nonincreasing if $a_1 \ge a_2 \ge a_3 \ge a_4 \ge a_5 \ge \dots$
- monotone if either nonincreasing or nondecreasing.

Examples (from above):

- 1. Bounded below (by m = 0, say) nondecreasing, **not** bounded above
- 2. Bounded $(-1 \le \cos(\pi/n) \le 1, \text{ for all } n = 1, 2, 3, \ldots)$, nondecreasing

- 3. Bounded $(-1 \le a_n \le 1, \text{ for every } n = 1, 2, 3, ...)$, not monotone (neither nondecreasing nor nonincreasing)
- 4. Nondecreasing, bounded below, not bounded above
- 5. Bounded $(0 \le a_n \le 9$, for every n = 1, 2, 3...), not monotone.

Behaviour 'at infinity'

Q: What's the limiting behaviour of $\{a_n\}$ when we let n get very large? i.e. what happens far to the right in the graph?

• Say $\{a_n\}$ converges to the real number L if y = L is a horizontal asymptote of the graph. In this case, write $L = \lim_{n\to\infty} a_n$ and say $\{a_n\}$ converges to L or, simply, $\{a_n\}$ is **convergent**. If the graph of $\{a_n\}$ does not possess a horizontal asymptote then say $\{a_n\}$ diverges.

• **Remark:** the rigorous mathematical definition of convergence will be investigated in Homework 1.

Important Examples:

- a) $\lim_{n\to\infty} \frac{1}{n} = 0$,
- b) Let x be a real number. Then,

$$\lim_{n \to \infty} x^n = \begin{cases} 0, & -1 < x \le 1\\ 1, & x = 1 \end{cases}$$

If $x \leq -1$ or x > 1 then $1, x, x^2, x^3, \dots$ is divergent.

• Important: divergent = not convergent

• If $\{a_n\}$ increases/decreases without bound then $\{a_n\}$ is **divergent to** $\pm\infty$. Write (confusingly) $\lim_{n\to\infty} a_n = \pm\infty$.

- 1. Diverges to $+\infty$, $\lim_{n\to\infty} n^2 = +\infty$
- 2. Converges to L = 1. Note: there's no n so that $\cos(\pi/n) = 1$; but the sequence approaches L = 1 as n gets very large.
- 3. Divergent.
- 4. Diverges to $+\infty$ (this relies on the following Theorem (originally due to Euclid): there are an infinite number of primes)
- 5. Diverges: this is because π is irrational (though this fact is non-obvious, neither is why this implies the sequence is divergent).

Limit Laws: Let $\{a_n\}, \{b_n\}$ be convergent sequences. Let c be a constant.

- $\lim_{n\to\infty}(a_n+b_n) = \lim_{n\to\infty}a_n + \lim_{n\to\infty}b_n$ i.e. the sum of convergent sequences is convergent
- $\lim_{n\to\infty} ca_n = c(\lim_{n\to\infty} a_n)$
- $\lim_{n\to\infty} a_n b_n = (\lim_{n\to\infty} a_n) (\lim_{n\to\infty} b_n)$ i.e. product of convergent sequences is convergent
- $\lim_{n\to\infty} \frac{a_n}{b_n} = \frac{\lim_{n\to\infty} a_n}{\lim_{n\to\infty} b_n}$ provided $\lim_{n\to\infty} b_n \neq 0$ $\lim_{n\to\infty} a_n^r = (\lim_{n\to\infty} a_n)^r$, provided $a_n \ge 0$

Determining limits/convergence: (HARD, in general)

Squeeze Theorem

Let $\{a_n\}$ be a sequence. Suppose there are convergent sequences $\{b_n\}$ and $\{c_n\}$ satisfying

- $c_n \leq a_n \leq b_n$, for every $n = 1, 2, 3, \ldots$, and
- $\lim_{n\to\infty} c_n = \lim_{n\to\infty} b_n = L$

Then, $\{a_n\}$ is convergent and $L = \lim_{n \to \infty} a_n$.

Example:

1. Let $a_n = \frac{(-1)^n}{n}$, $b_n = \frac{1}{n}$, $c_n = -\frac{1}{n}$. Then, $\lim_{n \to \infty} c_n = \lim_{n \to \infty} b_n = 0$ and $c_n \le a_n \le \frac{1}{n}$. b_n . Hence, $\{a_n\}$ is convergent, by the Squeeze Theorem, and $\lim_{n\to\infty} a_n = 0$.

2. Let $a_n = \sin(n)/n$. Let $b_n = 1/n$, $c_n = -1/n$. Then, $c_n \leq a_n \leq b_n$ (since $-1 \leq n$ $\sin(n) \leq 1$ and $\lim_{n \to \infty} c_n = \lim_{n \to \infty} b_n = 0$. Hence, $\{a_n\}$ is convergent, by the Squeeze Theorem, and $\lim_{n\to\infty} a_n = 0$.