Math 122C: Series & Multivariable Calculus Fall 2018

Contact: gwmelvin@colby.edu

September 28 Summary

SUPPLEMENTARY REFERENCES:

- Multivariable Calculus..., Ostebee-Zorn, Section 11.5

Keywords: power series

Power Series

• Recall: a power series is a series of the form

$$_0 + a_1(x-c) + a_2(x-c)^2 + \dots$$

where x is a variable; c is the **centre**; a_0, a_1, a_2, \ldots are **coefficients**.

• Basic question: For which series x does the power series converge?

• Remark: If I is the collection of all x for which a power series converges then we can define a function

$$f(x) = a_0 + a_1(x - c) + a_2(x - c)^2 + \dots, \quad x \text{ in } I$$

Example:

1. Any power series always converges at x = c; if x = c then the series becomes

$$a_0 + 0 + 0 + 0 + \dots = a_0$$

2. Consider the power series $\sum_{k=0}^{\infty} k! x^k$. Since

$$\left| \frac{(k+1)!x^{k+1}}{k!x^k} \right| = (k+1)|x|$$

the series does not converge, for any $x \neq 0$.

3. $\sum_{k=1}^{\infty} \frac{(x+2)^k}{k}$: let $c_k = \frac{(x+2)^k}{k}$. Then

$$\left| \frac{c_{k+1}}{c_k} \right| = \frac{|x+2|k}{(k+1)} \to |x+2|, \quad \text{as } k \to \infty$$

- converges (absolutely) if |x+2| < 1 i.e. -3 < x < -1
- diverges if |x+2| > 1 i.e. x < -3 or x > -1.
- x = -1: the series becomes $\sum \frac{1}{k}$, divergent; x = -3: the series becomes $\sum (-1)^k \frac{1}{k}$, which is convergent, by AST.

Hence, the series converges when $-3 \le x < -1$.

4. Similarly, $\sum_{k=1}^{\infty} \frac{(x+2)^k}{k^2}$ converges when $-3 \le x \le -1$.

Given a power series, one of three situations occur:

- power series converges only at x = c;
- power series converges on a finite interval;
- series converges for all x.

We call this interval the interval of convergence of the power series.