September 26 Summary

Supplementary References:

- Multivariable Calculus..., Ostebee-Zorn, Section 11.5

Keywords: power series

Power Series

- Recall: the series $\sum_{k=0}^{\infty} x^{k}$ converges when $-1<x<1$ and $\sum_{k=0}^{\infty} x^{k}=\frac{1}{1-x}$.

In particular, the function $f(x)=\frac{1}{1-x}$ can be represented as a series whenever $-1<x<1$.

- We can extend this idea: define $g(x)=\frac{1}{5-x}$, defined when $x \neq 5$. Note

$$
\begin{gathered}
\frac{1}{5-x}=\frac{1}{5} \cdot \frac{1}{1-x / 5} \stackrel{*}{=} \frac{1}{5} \sum_{k=0}^{\infty}\left(\frac{x}{5}\right)^{k}=\frac{1}{5}\left(1+\left(\frac{x}{5}\right)+\left(\frac{x}{5}\right)^{2}+\ldots\right) \\
=\frac{1}{5}+\frac{x}{25}+\frac{x^{2}}{125}+\frac{x^{3}}{625}+\ldots
\end{gathered}
$$

The equality $*$ holds whenever $-1<\frac{x}{5}<1$ i.e. $-5<x<5$. That is, we've given a series representation for $g(x)$, valid whenever $-5<x<5$.

- A power series is a series of the form

$$
a_{0}+a_{1}(x-c)+a_{2}(x-c)^{2}+a_{3}(x-c)^{3}+\ldots
$$

$\underline{\text { Here: } x \text { is a variable; } a_{0}, a_{1}, a_{2}, \ldots \text { are coefficients; } c \text { is the centre/base point. }}$

Example

1. The power series

$$
1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\ldots
$$

has centre $c=0$; coefficients $a_{k}=\frac{1}{k!}$.
Question: for which x does the series converge?
We use the following :

Extension of the Ratio Test

Let $\sum a_{k}$ be a series. Denote $L=\lim \left|\frac{a_{k+1}}{a_{k}}\right|$.

- If $L<1$ then the series converges absolutely.
- If $L>1$ then the series diverges.
- If $L=1$ then further testing is required.

Let $a_{k}=\frac{x^{k}}{k!}$. Then,

$$
\left|\frac{a_{k+1}}{a_{k}}\right|=\left|\frac{x^{k+1}}{(k+1)!} \frac{k!}{x^{k}}\right|=\frac{|x|}{(k+1)} \rightarrow 0, \quad \text { as } k \rightarrow \infty
$$

Hence, the series converges for all x.
2. Consider the power series

$$
\sum_{k=0}^{\infty} \frac{(x-1)^{k}}{3^{k}}=1+\frac{(x-1)}{3}+\frac{(x-1)^{2}}{9}+\ldots
$$

The centre is $c=1$; coefficients $a_{k}=\frac{1}{3^{k}}$. Again, we want to determine those x for which the series converges. We proceed as above.
Let $a_{k}=\frac{(x-1)^{k}}{3^{k}}$. Then,

$$
\left|\frac{a_{k+1}}{a_{k}}\right|=\frac{|x-1|}{3} \rightarrow \frac{|x-1|}{3}, \quad \text { as } k \rightarrow \infty
$$

Hence

- The series converges (absolutely) when $\frac{|x-1|}{3}<1$ i.e. $|x-1|<3$ i.e. $-2<x<4$
- The series diverges when $|x-1|>3$ i.e. $x<-2$ or $x>4$.
- We have to check what happens when $|x-1|=3$ i.e. $x=-2$ or $x=4$.
- $x=-2$: the series becomes $\sum_{k=0}^{\infty} \frac{(-3)^{k}}{3^{k}}=\sum_{k=0}^{\infty}(-1)^{k}$, which is divergent.
- $x=4$: the series becomes $\sum_{k=0}^{\infty} \frac{3^{k}}{3^{k}}=\sum_{k=0}^{\infty} 1$, which is divergent. Hence, the power series converges for $-2<x<4$.

