September 25 Summary

Supplementary References:

- Multivariable Calculus..., Ostebee-Zorn, Section 11.4

Keywords: alternating series, Alternating Series Test, absolutely convergent, conditionally convergent

Alternating Series Test; Absolute/conditional Convergence

- Observe: $\sum \frac{1}{k}$ diverges but $\sum \frac{(-1)^{k+1}}{k}$ converges; $\sum \frac{1}{k^{2}}$ converges and $\sum \frac{(-1)^{k+1}}{k^{2}}$ converges.
- Let $\sum a_{k}$ be a series; here a_{k} can be arbitrary.
- If $\sum\left|a_{k}\right|$ converges then we say that $\sum a_{k}$ is absolutely convergent.
- If $\sum\left|a_{k}\right|$ does not converge but $\sum a_{k}$ converges then we say that $\sum a_{k}$ is conditionally convergent.

1. $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k}$ is conditionally convergent: the series $\sum_{k=1}^{\infty} \frac{1}{k}$ does not converge while the original series is convergent.
2. $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^{2}+1}$ is absolutely convergent: the series $\sum_{k=1}^{\infty} \frac{1}{k^{2}+1}$ is convergent.
3. $\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}$ is absolutely convergent: the series $\sum_{k=0}^{\infty} \frac{1}{k!}$ is convergent.

- Note: if a series $\sum a_{k}$ converges absolutely then, at the moment, we do not know anything about the convergence of $\sum a_{k}$. However, it's not too difficult to show the following:

$$
\mathrm{AC} \Longrightarrow \mathrm{C}
$$

Let $\sum a_{k}$ be an absolutely convergent series. Then, $\sum a_{k}$ is convergent.

Example:

1. Consider the series $\sum_{k=1}^{\infty} \frac{\sin (k)}{k^{2}}$. The terms of this series are neither non-negative nor alternating: we can't apply any of our previous tests for convergence. Let $a_{k}=\frac{\sin (k)}{k^{2}}$. Then, for every k,

$$
\left|a_{k}\right|=\frac{|\sin (k)|}{k^{2}} \leq \frac{1}{k^{2}}
$$

Here we use the fact that $|\sin (x)| \leq 1$, for all x. Hence, $\sum\left|a_{k}\right|$ converges by Comparison with the convergent p-series $\sum \frac{1}{k^{2}}$. Hence, the series $\sum a_{k}$ converges absolutely, and $\sum a_{k}$ converges, by $\mathrm{AC} \Longrightarrow \mathrm{C}$.
2. Consider the series $\sum_{k=1}^{\infty} \frac{\cos (k)}{7^{k}+2^{k}+\sin ^{2}(k)}$. Let $a_{k}=\frac{\cos (k)}{7^{k}+2^{k}+\sin ^{2}(k)}$. Then, for every k,

$$
\left|a_{k}\right|=\left\lvert\, \frac{|\cos (k)|}{7^{k}+2^{k}+\sin ^{2}(k)} \leq \frac{1}{7^{k}+2^{k}+\sin ^{2}(k)}<\frac{1}{7^{k}}\right.
$$

The last inequality follows because $2^{k}+\sin ^{2}(k)>0$, for all $k \geq 1$. Hence, $\sum\left|a_{k}\right|$ converges by Comparison with the convergent geometric series $\sum 7^{-k}$. Therefore, the series $\sum a_{k}$ is absolutely convergent and $\sum a_{k}$ is convergent, by $\mathrm{AC} \Longrightarrow \mathrm{C}$.

- Remark: Absolutely convergent series behave like 'infinite sums' in the following way: we may rearrange their terms without affecting their convergence behaviour. The same is not true for conditionally convergent series, as we will now see.
Consider the conditionally convergent alternating Harmonic series $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k}$: this series converges to a limit L, and $\frac{1}{2}<L<1$.

$$
\begin{equation*}
L=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\frac{1}{7}-\frac{1}{8} \cdots \tag{A}
\end{equation*}
$$

Then,

$$
\begin{equation*}
\frac{L}{2}=\frac{1}{2}-\frac{1}{4}+\frac{1}{6}-\frac{1}{8} \cdots \tag{B}
\end{equation*}
$$

Now, we add $(A)+(B)$

$$
\frac{3 L}{2}=1+\frac{1}{3}-\frac{1}{2}+\frac{1}{5}+\frac{1}{7}-\frac{1}{4}+\frac{1}{9} \ldots
$$

Suppose we are allowed to rearrange the terms of this last series: then we can see that

$$
\frac{3 L}{2}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\frac{1}{7}-\frac{1}{8}-\ldots=L \Longrightarrow \quad L=0
$$

This is absurd as $\frac{1}{2}<L<1$. Therefore, our process of rearrangement affects the limit. In fact, even weirder things can happen.

- Riemann Rearrangement Theorem: Let $\sum a_{k}$ be a conditionally convergent series and r be any real number. Then, there is a rearrangement

$$
b_{1}, b_{2}, b_{3}, b_{4}, \ldots
$$

of the sequence of terms $a_{1}, a_{2}, a_{3}, a_{4}, \ldots$ so that $\sum b_{j}=r$.

