## SEPTEMBER 24 Summary

## Supplementary References:

- Multivariable Calculus..., Ostebee-Zorn, Section 11.4

Keywords: alternating series, Alternating Series Test,

## Alternating Series Test

- A series of the form

$$
b_{1}-b_{2}+b_{3}-b_{4}+\ldots \quad \text { or } \quad-b_{1}+b_{2}-b_{3}+b_{4}-\ldots
$$

with $b_{k}>0$, is called an alternating series.

## Example:

1. $\sum_{k=1}^{\infty}(-1)^{k+1} \frac{1}{k}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\ldots$ is alternating.
2. $\sum_{k=1}^{\infty} \sin (k)=\sin (1)+\sin (2)+\sin (3)+\ldots$ is not alternating: $\sin (1), \sin (2)>0$.

## Alternating Series Test (AST)

Let $\sum(-1)^{k} b_{k}$ be an alternating series, $b_{k}>0$. Suppose

- $b_{1}>b_{2}>b_{3}>b_{4}>\ldots>b_{k}>\ldots$, and
- $\lim b_{k}=0$

Then, $\sum(-1)^{k} b_{k}$ is convergent. Moreover, in this case $S=\sum(-1)^{k} b_{k}$ lies between any two successive partial sums $s_{n}, s_{n+1}$ i.e.

$$
s_{n}<s<s_{n+1} \quad \text { or } \quad s_{n+1}<s<s_{n}
$$

In particular, $\left|s-s_{n}\right|<b_{n+1}$, for any $n$.

## Example:

1. The series $\sum_{k=1}^{\infty}(-1)^{k+1} \frac{1}{k^{2}+1}$ is convergent: let $b_{k}=\frac{1}{k^{2}+1}$. Then,

- $b_{k+1}=\frac{1}{(k+1)^{2}+1}<\frac{1}{k^{2}+1}=b_{k}$, for all $k$,
- $\lim \frac{1}{k^{2}+1}=0$.

Hence, the series is convergent by the Alternating Series Test.
2. The series $\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}=1-1+\frac{1}{2}-\frac{1}{6}+\frac{1}{24}-\ldots$ is convergent: let $b_{k}=\frac{1}{k!}$. Then,

- $b_{k+1}=\frac{1}{(k+1)!}<\frac{1}{k!}=b_{k}$, for all $k$,
- $\lim \frac{1}{k!}=0$.

Hence, the series converges by the Alternating Series Test. Moreover, if $s=$ $\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}$ then $s_{10}$ approximates $s$ to within $\left|s-s_{10}\right|<\frac{1}{11!} \approx 0.000000025$. In fact, $\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}=\frac{1}{e}$.
3. $\sum_{k=1}^{\infty}(-1)^{k+1} \frac{k}{k+2}$ : let $b_{k}=\frac{k}{k+2}$. In this case, $\lim b_{k}=1 \neq 0$ so can't apply AST. However, we observe that $\lim (-1)^{k+1} \frac{k}{k+2}$ does not exist, so the series is divergent, by the Test for Divergence.

- Caution: if an alternating series fails the first condition of AST then the series need not be divergent: consider the series $\sum_{k=1}^{\infty}(-1)^{k+1} b_{k}$, where

$$
b_{k}= \begin{cases}\frac{1}{2^{k}}, & k \text { odd } \\ \frac{1}{3^{k}}, & k \text { even }\end{cases}
$$

Then, $b_{k}$ is not decreasing: the sequence is $1 / 2,1 / 9,1 / 8,1 / 81,1 / 32, \ldots$. However,

$$
\begin{aligned}
\sum_{k=1}^{\infty} b_{k}= & \frac{1}{2}+\frac{1}{9}+\frac{1}{8}+\frac{1}{81}+\frac{1}{32}+\ldots \\
& =\frac{1}{2} \sum_{k=0}^{\infty} \frac{1}{4^{k}}+\sum_{j=1}^{\infty} \frac{1}{4^{j}}
\end{aligned}
$$

Since $\sum b_{k}$ is convergent, the series $\sum(-1)^{k+1} b_{k}$ is absolutely convergent and, therefore, convergent.

