

Contact: gwmelvin@colby.edu

September 24 Summary

SUPPLEMENTARY REFERENCES:

- Multivariable Calculus..., Ostebee-Zorn, Section 11.4

KEYWORDS: alternating series, Alternating Series Test,

Alternating Series Test

• A series of the form

 $b_1 - b_2 + b_3 - b_4 + \dots$ or $-b_1 + b_2 - b_3 + b_4 - \dots$

with $b_k > 0$, is called an **alternating series**.

Example:

1.
$$\sum_{k=1}^{\infty} (-1)^{k+1} \frac{1}{k} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots$$
 is alternating.
2.
$$\sum_{k=1}^{\infty} \sin(k) = \sin(1) + \sin(2) + \sin(3) + \dots$$
 is not alternating: $\sin(1), \sin(2) > 0.$

Alternating Series Test (AST)

- Let $\sum (-1)^k b_k$ be an alternating series, $b_k > 0$. Suppose
 - $b_1 > b_2 > b_3 > b_4 > \ldots > b_k > \ldots$, and
 - $\lim b_k = 0$

Then, $\sum (-1)^k b_k$ is convergent. Moreover, in this case $S = \sum (-1)^k b_k$ lies between any two successive partial sums s_n , s_{n+1} i.e.

$$s_n < s < s_{n+1} \quad \text{or} \quad s_{n+1} < s < s_n$$

In particular, $|s - s_n| < b_{n+1}$, for any n.

Example:

1. The series $\sum_{k=1}^{\infty} (-1)^{k+1} \frac{1}{k^2+1}$ is convergent: let $b_k = \frac{1}{k^2+1}$. Then, • $b_{k+1} = \frac{1}{(k+1)^2+1} < \frac{1}{k^2+1} = b_k$, for all k, • $\lim \frac{1}{k^2+1} = 0$.

Hence, the series is convergent by the Alternating Series Test.

- 2. The series $\sum_{k=0}^{\infty} \frac{(-1)^k}{k!} = 1 1 + \frac{1}{2} \frac{1}{6} + \frac{1}{24} \dots$ is convergent: let $b_k = \frac{1}{k!}$. Then,
 - l nen,
 - $b_{k+1} = \frac{1}{(k+1)!} < \frac{1}{k!} = b_k$, for all k,
 - $\lim \frac{1}{k!} = 0.$

Hence, the series converges by the Alternating Series Test. Moreover, if $s = \sum_{k=0}^{\infty} \frac{(-1)^k}{k!}$ then s_{10} approximates s to within $|s - s_{10}| < \frac{1}{11!} \approx 0.00000025$. In fact, $\sum_{k=0}^{\infty} \frac{(-1)^k}{k!} = \frac{1}{e}$. 3. $\sum_{k=1}^{\infty} (-1)^{k+1} \frac{k}{k+2}$: let $b_k = \frac{k}{k+2}$. In this case, $\lim b_k = 1 \neq 0$ so can't apply

AST. However, we observe that $\lim_{k \to 2} (-1)^{k+1} \frac{k}{k+2}$ does not exist, so the series is divergent, by the Test for Divergence.

• Caution: if an alternating series fails the first condition of AST then the series need not be divergent: consider the series $\sum_{k=1}^{\infty} (-1)^{k+1} b_k$, where

$$b_k = \begin{cases} \frac{1}{2^k}, & k \text{ odd,} \\ \frac{1}{3^k}, & k \text{ even.} \end{cases}$$

Then, b_k is not decreasing: the sequence is $1/2, 1/9, 1/8, 1/81, 1/32, \ldots$ However,

$$\sum_{k=1}^{\infty} b_k = \frac{1}{2} + \frac{1}{9} + \frac{1}{8} + \frac{1}{81} + \frac{1}{32} + \dots$$
$$= \frac{1}{2} \sum_{k=0}^{\infty} \frac{1}{4^k} + \sum_{j=1}^{\infty} \frac{1}{4^j}$$

Since $\sum b_k$ is convergent, the series $\sum (-1)^{k+1}b_k$ is absolutely convergent and, therefore, convergent.