
Math 122C: Series &
Multivariable Calculus

Fall 2018
Contact: gwmelvin@colby.edu

September 19 Summary
Supplementary References:

- Multivariable Calculus..., Ostebee-Zorn, Section 11.3

Keywords: p-series, p-series test

p-series Test

• Recall:
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• Observe: For p ≥ 2, and any k = 1, 2, 3, . . ., 1
kp
≤ 1

k2
. Hence, by Comparison

Test,
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is convergent whenever p ≥ 2.

•What happens for 1 < p < 2? We will determine this behaviour by comparing

the series
∞∑
k=1

1

kp
, 1 < p < 2, with an appropriate improper integral.

• Fix 1 < p < 2. Let f(x) = 1
xp , x > 0. Then,∫ ∞
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The last equality follows because p− 1 > 0 (i.e. p > 1) so that, as a gets very large,
1

ap−1 → 0. In particular, the improper integral
∫∞
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f(x)dx converges and its value
(= 1

p−1) computes the area below the graph y = f(x), 1 ≤ x <∞.
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The rectangles above have successive areas 1
2p
, 1

3p
, 1

4p
, 1

5p
,. . . . Therefore,
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Hence,
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converges whenever 1 < p < 2.

p-series Test

The series
∞∑
k=1

1

kp
is

• convergent if p > 1,

• divergent if p ≤ 1.

Example:

1.
∞∑
k=1
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k3/2 + 5k + 1
: for each k = 1, 2, 3, . . .

1
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<
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. Since
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is convergent, by p-series Test, the series
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is convergent, by

Comparison Test.

2.
∞∑
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5k + 1
: we might think to compare with the divergent series

∞∑
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5k
. How-

ever, 1
5k+1

< 1
5k
, for each k, and the Comparison Test does not apply. All is

not lost: note that, for every k = 1, 2, 3, . . .,

5k + 1 < 10k =⇒ 1
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<
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Moreover, the series
∞∑
k=1
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10k
is divergent, so that the series

∞∑
k=1
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5k + 1
is di-

vergent, by the Comparison Test.

• Remark: In the second example we have used the following fact: Let c be a
constant. Then∑

ak convergent/divergent ⇔
∑

cak convergent/divergent
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