

Contact: gwmelvin@colby.edu

September 19 Summary

SUPPLEMENTARY REFERENCES:

- Multivariable Calculus..., Ostebee-Zorn, Section 11.3

KEYWORDS: *p*-series, *p*-series test

p-series Test

• Recall:

 $\sum_{k=1}^{\infty} \frac{1}{k^p} = 1 + \frac{1}{2^p} + \frac{1}{3^p} + \frac{1}{4^p} + \dots \text{ is divergent when } p \le 1$ $\sum_{k=1}^{\infty} \frac{1}{k^2} = 1 + \frac{1}{4} + \frac{1}{9} + \frac{1}{16} + \dots \text{ is convergent.}$

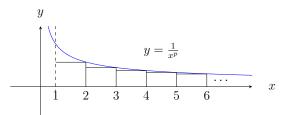
• Observe: For $p \ge 2$, and any $k = 1, 2, 3, ..., \frac{1}{k^p} \le \frac{1}{k^2}$. Hence, by Comparison Test, $\sum_{k=1}^{\infty} \frac{1}{k^p}$ is convergent whenever $p \ge 2$.

• What happens for $1 ? We will determine this behaviour by comparing the series <math>\sum_{k=1}^{\infty} \frac{1}{k^p}$, 1 , with an appropriate improper integral.

• Fix $1 . Let <math>f(x) = \frac{1}{x^p}$, x > 0. Then,

$$\int_{1}^{\infty} f(x)dx = \lim_{a \to \infty} \int_{1}^{a} \frac{1}{x^{p}}dx$$
$$= \lim_{a \to \infty} \left[\frac{1}{1-p}\frac{1}{x^{p-1}}\right]_{1}^{a}$$
$$= \lim_{a \to \infty} \left(\frac{1}{1-p}\left(\frac{1}{a^{p-1}}-1\right)\right)$$
$$= \frac{1}{1-p}\left(\lim_{a \to \infty} \left(\frac{1}{a^{p-1}}-1\right)\right) = \frac{1}{p-1}$$

The last equality follows because p-1 > 0 (i.e. p > 1) so that, as a gets very large, $\frac{1}{a^{p-1}} \to 0$. In particular, the improper integral $\int_1^\infty f(x) dx$ converges and its value $(=\frac{1}{p-1})$ computes the area below the graph $y = f(x), 1 \le x < \infty$.



The rectangles above have successive areas $\frac{1}{2^p}$, $\frac{1}{3^p}$, $\frac{1}{4^p}$, $\frac{1}{5^p}$,.... Therefore,

$$\sum_{k=2}^{\infty} \frac{1}{k^p} = \text{ combined area of all rectangles} < \int_1^{\infty} \frac{1}{x^p} dx$$

Hence,

$$\sum_{k=1}^{\infty} \frac{1}{k^p} = 1 + \sum_{k=2}^{\infty} \frac{1}{k^p}$$

converges whenever 1 .

p-series Test The series $\sum_{k=1}^{\infty} \frac{1}{k^p}$ is • convergent if p > 1, • divergent if $p \le 1$.

Example:

1.
$$\sum_{k=1}^{\infty} \frac{1}{k^{3/2} + 5k + 1}$$
: for each $k = 1, 2, 3, \dots, \frac{1}{k^{3/2} + 5k + 1} < \frac{1}{k^{3/2}}$. Since $\sum_{k=1}^{\infty} \frac{1}{k^{3/2}}$ is convergent, by *p*-series Test, the series $\sum_{k=1}^{\infty} \frac{1}{k^{3/2} + 5k + 1}$ is convergent, by Comparison Test.

2. $\sum_{k=1}^{\infty} \frac{1}{5k+1}$: we might think to compare with the divergent series $\sum_{k=1}^{\infty} \frac{1}{5k}$. However, $\frac{1}{5k+1} < \frac{1}{5k}$, for each k, and the Comparison Test does not apply. All is not lost: note that, for every $k = 1, 2, 3, \ldots$,

$$5k+1 < 10k \quad \Longrightarrow \quad \frac{1}{10k} < \frac{1}{5k+1}$$

Moreover, the series $\sum_{k=1}^{\infty} \frac{1}{10k}$ is divergent, so that the series $\sum_{k=1}^{\infty} \frac{1}{5k+1}$ is divergent, by the Comparison Test.

• **Remark:** In the second example we have used the following FACT: Let c be a constant. Then

$$\sum a_k$$
 convergent/divergent $\Leftrightarrow \sum ca_k$ convergent/divergent