September 18 Summary

Supplementary References:

- Multivariable Calculus..., Ostebee-Zorn, Section 11.3

Keywords: comparison test, p-series, p-series test

Comparison Test; p-SERIES

- Recall: the Harmonic Series $\sum_{k=1}^{\infty} \frac{1}{k}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\ldots$ is divergent.
- To obtain this result we compared the Harmonic series with another series. Today we will develop this idea of comparison.

Consider the series $\sum_{k=0}^{\infty} \frac{1}{5^{k}+2}$. This series looks like a geometric series but we can't apply the Geometric Series Theorem (because it's not a geometric series). Note

$$
\begin{gathered}
\frac{1}{5^{k}+2}<\frac{1}{5^{k}}, \quad k=0,1,2, \ldots \\
\Longrightarrow \frac{1}{5^{0}+2}+\frac{1}{5^{1}+2}+\ldots+\frac{1}{5^{n}+2}<\frac{1}{5^{0}}+\frac{1}{5^{1}}+\ldots+\frac{1}{5^{n}}<\sum_{k=0}^{\infty} \frac{1}{5^{k}}=\frac{1}{1-1 / 5}=\frac{5}{4}
\end{gathered}
$$

The sum on the left is s_{n}, the $n^{\text {th }}$ partial sum of $\sum_{k=0}^{\infty} \frac{1}{5^{k}+2}$, the sum on the right is the $n^{\text {th }}$ partial sum of $\sum_{k=0}^{\infty} \frac{1}{5^{k}}$.

- Observation: $\left\{s_{n}\right\}$ is bounded above (by $5 / 4$); $\left\{s_{n}\right\}$ is increasing $-s_{n+1}=s_{n}+$ $\frac{1}{5^{n+1}+2}>s_{n}$. Hence, the sequence of partial sums $\left\{s_{n}\right\}$ is convergent $\Longrightarrow \sum_{k=0}^{\infty} \frac{1}{5^{k}+2}$ is convergent.

The above example generalises to the following result.

Comparison Test:

Let $\sum a_{k}$ and $\sum b_{k}$ be series, and suppose that $0 \leq a_{k} \leq b_{k}$ for every k.

- If $\sum b_{k}$ converges then $\sum a_{k}$ converges and $\sum a_{k} \leq \sum b_{k}$;
- If $\sum a_{k}$ diverges then $\sum b_{k}$ diverges.
- To take advantage of the Comparison Test we need to build a bank of standard series whose behaviour is known - these are the series we will use to compare other series against.

Example:

1. The series $\sum_{k=1}^{\infty} \frac{1}{k}$ diverges. Note,

$$
\frac{1}{\sqrt{k}} \leq \frac{1}{k}, \quad \text { for every } k=1,2,3, \ldots
$$

Hence, $\sum_{k=1}^{\infty} \frac{1}{\sqrt{k}}$ diverges, by the Comparison Test.
Observation: This example generalises: if $p \leq 1$ then $\frac{1}{k^{p}} \leq \frac{1}{k}$, for every $k=1,2,3, \ldots$. Hence, $\sum_{k=1}^{\infty} \frac{1}{k^{p}}$ diverges, for any $p \leq 1$, by the Comparison Test.
2. Recall the series $\sum_{k=1}^{\infty} \frac{1}{k(k+1)}=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\ldots=1$. We can rewrite this series as

$$
\sum_{k=2}^{\infty} \frac{1}{k(k-1)}=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\ldots=1
$$

For each $k=2,3,4, \ldots, \frac{1}{k(k-1)}<\frac{1}{k^{2}}$. Hence, the series $\sum_{k=2}^{\infty} \frac{1}{k^{2}}$ is convergent and $\sum_{k=2}^{\infty} \frac{1}{k^{2}} \leq \sum_{k=2}^{\infty} \frac{1}{k(k-1)}=1$.
This implies the series $1+\sum_{k=2}^{\infty} \frac{1}{k^{2}}=\sum_{k=1}^{\infty} \frac{1}{k^{2}}$ is convergent and $\sum_{k=1}^{\infty} \frac{1}{k^{2}} \leq 2$. In fact, in the 1730s Euler showed that

$$
\sum_{k=1}^{\infty} \frac{1}{k^{2}}=\frac{\pi^{2}}{6} \approx 1.645
$$

