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e Recall: the Harmonic Series Z P = 1+ 3 + 3 + 1 + ... is divergent.

e To obtain this result we Compared the Harmonic series with another series. Today
we will develop this idea of comparison.
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Consider the series Z . This series looks like a geometric series but we can’t
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apply the Geometric Series Theorem (because it’s not a geometric series). Note
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The sum on the left is s,,, the n'* partial sum of Z

> i the sum on the right is

the n** partial sum of Z —
e Observation: {sn} is bounded above (by 5/4); {s,} is increasing - s,+1 = s, +
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> s,. Hence, the sequence of partial sums {s,} is convergent =—- Z
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is convergent.

The above example generalises to the following result.

Comparison Test:

Let > ay and Y by be series, and suppose that 0 < a < by, for every k.
e If > b, converges then > aj converges and Y ap < D by;

o If > a; diverges then ) by diverges.




e To take advantage of the Comparison Test we need to build a bank of standard
series whose behaviour is known - these are the series we will use to compare other
series against.

Example:

diverges. Note,
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for every k =1,2,3,...
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Hence, Z —— diverges, by the Comparison Test.
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Observation: This example generalises: if p < 1 then kip < %, for every
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k=1,2,3,.... Hence, Z ™ diverges, for any p < 1, by the Comparison Test.
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2. Recall the series i L L + ! + L + 1. We can rewrite this
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For each k =2,3,4 —A— < L Hence, the series Z 1 is convergent and
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This implies the series 1+ Z 7z Z 2 is convergent and Z 2 <2. In
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fact, in the 1730s Euler showed that
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