

Math 122C: Series & Multivariable Calculus Fall 2018

Contact: gwmelvin@colby.edu

SEPTEMBER 17 SUMMARY

SUPPLEMENTARY REFERENCES:

- Multivariable Calculus..., Ostebee-Zorn, Section 11.2

Keywords: Test for Divergence, Harmonic series

TEST FOR DIVERGENCE; HARMONIC SERIES

• Let $\sum_{k=1}^{\infty} a_k$ be a **convergent** series with partial sums $s_n = a_1 + \ldots + a_n$. Observe

that $a_n = s_n - s_{n-1}, n = 2, 3, \ldots$ Since $\sum_{k=1}^{\infty} a_k$ convergent, $\lim s_n = s$ exists. **Note:** $\lim s_{n-1} = s$ too. Hence,

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} (s_n - s_{n-1})$$

$$= \lim_{n \to \infty} s_n - \lim_{n \to \infty} s_{n-1}$$

$$= s - s = 0$$

- Summary: if $\sum_{k=1}^{\infty} a_k$ is convergent then $\{a_k\}$ is convergent and $\lim_{k\to\infty} a_k = 0$.
- Equivalently: (Test for Divergence) If either $\{a_k\}$ is divergent or $\lim a_k \neq 0$ then $\sum a_k$ is divergent.

Example:

- 1. $\sum_{k=1}^{\infty} \sin(k)$: $a_k = \sin(k)$. The sequence $\{a_k\}$ is divergent. Hence, the series $\sum_{k=1}^{\infty} \sin(k)$ is divergent by the Test for Divergence.
- 2. $\sum_{k=1}^{\infty} \frac{3k+2}{5k-1}$, $a_k = \frac{3k+2}{5k-1}$. Using Limit Laws for Sequences, can show

$$\lim a_k = \lim \frac{3k+2}{5k-1} = \lim \frac{3+2/k}{5-1/k} = \frac{3+0}{5-0} = \frac{3}{5} \neq 0$$

Since $\lim a_k \neq 0$, the series $\sum_{k=1}^{\infty} a_k$ is divergent, by the Test for Divergence.

• Careful: Test for Divergence is not saying: if $\lim a_k = 0$ then $\sum_{k=1}^{\infty} a_k$ is convergent.

The following example is fundamental.

• The series $\sum_{k=1}^{\infty} \frac{1}{k}$ is called the **Harmonic Series**. Note: $\lim \frac{1}{k} = 0$. However, the Harmonic series is **divergent**: suppose the series were convergent with limit H. Then,

$$H = \sum_{k=1}^{\infty} \frac{1}{k} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} + \dots$$

$$> 1 + \frac{1}{2} + \left(\frac{1}{4} + \frac{1}{4}\right) + \left(\frac{1}{6} + \frac{1}{6}\right) + \left(\frac{1}{8} + \frac{1}{8}\right) + \dots$$

$$= \frac{1}{2} + \left(\frac{1}{2} + \frac{1}{2}\right) + \left(\frac{1}{4} + \frac{1}{4}\right) + \left(\frac{1}{6} + \frac{1}{6}\right) + \left(\frac{1}{8} + \frac{1}{8}\right) + \dots$$

$$= \frac{1}{2} + 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots$$

$$= \frac{1}{2} + H$$

In summary:

$$H > \frac{1}{2} + H$$

This inequality is nonsense. Therefore, our assumption that the Harmonic Series is convergent can't possibly be true. The only remaining possibility, therefore, is that the Harmonic Series is divergent.