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TEST FOR DIVERGENCE; HARMONIC SERIES

o Let Z a, be a convergent series with partial sums s, = a; + ...+ a,. Observe

k=1
[o.¢]
that a,, = s, — s,-1, n = 2,3,.... Since E ay convergent, lim s,, = s exists. Note:
k=1

lims,,_1 = s too. Hence,

lim a, = lim (s, — sp_1)
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= lim s, — hm Sp—1

n—o0
=s5—5=0
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e Summary: if Z ay, is convergent then {a} is convergent and klim a = 0.
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e Equivalently: (Test for Divergence) If either {as} is divergent or limay # 0

then > ay is divergent.

Example:

L. Zsm : ar = sin(k). The sequence {ay} is divergent. Hence, the series

Z sin(k) is divergent by the Test for Divergence.

3k+2

= 5. Using Limit Laws for Sequences, can show
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lim a;, = lim

Since lim a; # 0, the series Z ay is divergent, by the Test for Divergence.
k=1

e Careful: Test for Divergence is not saying: if lim a; = 0 then Z ay is convergent.
k=1



The following example is fundamental.

1

- 0. However,
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e The series Z z is called the Harmonic Series. Note: lim
k=1
the Harmonic series is divergent: suppose the series were convergent with limit H.

Then,
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In summary:
1
H>-+H

2
This inequality is nonsense. Therefore, our assumption that the Harmonic Series is
convergent can’t possibly be true. The only remaining possibility, therefore, is that
the Harmonic Series is divergent.



