SEPTEMBER 14 Summary

Supplementary References:

- Multivariable Calculus..., Ostebee-Zorn, Section 11.2

Keywords: geometric series, Test for Divergence

Geometric Series Theorem; Test for Divergence

- Let $x \neq 1$ be a real number. Then, $\sum_{k=0}^{\infty} x^{k}$ is a geometric series with partial sum

$$
s_{n}=1+x+x^{2}+\ldots+x^{n}=\frac{1-x^{n+1}}{1-x}
$$

In HW1 you showed that
$\lim _{n \rightarrow \infty} x^{n+1}=\left\{\begin{array}{ll}0, & |x|<1, \\ \text { DNE, } \quad x<-1 \text { or } x>1\end{array} \quad \Longrightarrow \quad \lim _{n \rightarrow \infty} s_{n}= \begin{cases}\frac{1}{1-x}, & |x|<1, \\ \text { DNE, } & x<-1 \text { or } x>1\end{cases}\right.$
Hence, $\sum_{k=0}^{\infty} x^{k}\left\{\begin{array}{l}\text { converges, } \quad-1<x<1, \\ \text { diverges, }\end{array} \quad-1<x\right.$ or $x>1 \quad$ and

$$
\sum_{k=0}^{\infty} x^{k}=\frac{1}{1-x}, \quad-1<x<1
$$

This conclusion is the Geometric Series Theorem.

- If $x= \pm 1$ then $\sum_{k=0}^{\infty} x^{k}$ is divergent:
- the case $x=-1$ was seen last lecture,
- the case $x=1$: the partial sum is $s_{n}=1+1+1+\ldots+1=n$. Since $\left\{s_{n}\right\}$ is divergent, the series $\sum_{k=0}^{\infty} 1$ is divergent.

Example:

1. $\sum_{k=0}^{\infty}\left(\frac{2}{3}\right)^{k}$ is geometric series with $x=\frac{2}{3}$. Since $-1<\frac{2}{3}<1$, the series converges (by the Geometric Series Theorem), and $\sum_{k=0}^{\infty}\left(\frac{2}{3}\right)^{k}=\frac{1}{1-2 / 3}=3$
2. $\sum_{k=0}^{\infty} \frac{5^{k}}{3^{k}}$ diverges: this is a geometric series with $x=\frac{5}{3}>1$.
3. Consider the series $\sum_{k=0}^{\infty} \frac{3^{k}}{2^{2 k}}$. Rewrite $\frac{3^{k}}{2^{2 k}}=\frac{3^{k}}{\left(2^{2}\right)^{k}}=\left(\frac{3}{4}\right)^{k}$. Hence, we have geometric series with $x=\frac{3}{4}$ so that the series is convergent and $\sum_{k=0}^{\infty} \frac{3^{k}}{2^{2 k}}=\frac{1}{1-3 / 4}=4$.
4. Consider the decimal expansion $0.999 \ldots$.. Can write using a geometric series:

$$
\begin{aligned}
0.999 \ldots & =\frac{9}{10}+\frac{9}{100}+\frac{9}{1000}+\ldots \\
& =\frac{9}{10}\left(1+\frac{1}{10}+\frac{1}{10^{2}}+\ldots\right) \\
& =\frac{9}{10} \sum_{k=0}^{\infty} \frac{1}{10^{k}} \\
& =\frac{9}{10}\left(\frac{1}{1-1 / 10}\right)=1
\end{aligned}
$$

Limit Laws for Series (Theorem 5, Section 11.2)

- Let $\sum a_{k}$ and $\sum b_{k}$ be convergent series, $\sum a_{k}=A, \sum b_{k}=B$. Then, $\sum\left(a_{k}+b_{k}\right)=$ $A+B$ is convergent.
- If c is a constant then $\sum\left(c a_{k}\right)=c A$.

