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INFINITE SERIES; SEQUENCE OF PARTIAL SUMS
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e Last time: Defined a sequence {s,}, where
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sp is the distance covered after n steps across a room (having width D) where,
at the n** step, we half the distance to the opposite side of the room. e {s,} is
nondecreasing and bounded above, so it converges, by MBT; lim s, = D
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e Seems reasonable to write
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despite fact that it’s impossible to ‘sum’ an infinite collection of numbers. In partic-
ular, if D =1 then
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e Example:
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Define

s, = area lying above y = ™ in unit square =a; +as+as+...+a,
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e Compute: a, = fol(xn_l —a")dzr = n(nl-+—1)
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e {s,} is nondecreasing and bounded above. By MBT, {s,,} converges; lim s, =1

(the limit is the total area of unit square) o As before, seems reasonable to write:
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e Observe: we have just written down two infinite sums but we must be careful with
our interpretation: it’s literally impossible to ‘add’ an infinite collection of numbers
(not enough time). What the ‘infinite sum’ means is that we have taken a limit of a
sequence whose terms are finite sums.

e An infinite series (or series) is an expression

Zak:a1+a2+a3+a4+...

k=1
where a1, as,as, ... is a sequence of real numbers.
Example:
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Aim: determine whether a series Zak is meaningful i.e. does it converge to a
k=1

finite real number? need to make this notion rigorous.
e The n'* partial sum of a series ) ay is the (finite number)
k=1
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Say the series > a; converges if the sequence of partial sums {s,} converges i.e.
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S = lim s,. In this case, we write Z ap=9S.
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e Note: if a series converges then we have (by definition) Z ap = lim Z ag

k=1 k=1



e Recall: (Sigma Notation) Given a finite collection of numbers a4,...,a, we
denote

n
Yap=ar+az+...+ap
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The symbol ¥ is the Greek capital letter sigma.



