September 11 Summary

Supplementary References:

- Multivariable Calculus..., Ostebee-Zorn, Section 11.2

KEYWORDS: infinite series, convergence of series, sequence of partial sums
Infinite Series; Sequence of Partial Sums

- Last time: Defined a sequence $\left\{s_{n}\right\}$, where

$$
s_{n}=\frac{D}{2}+\frac{D}{4}+\frac{D}{8}+\ldots+\frac{D}{2^{n}}
$$

and

$$
s_{n}=s_{n-1}+\frac{D}{2^{n}}
$$

s_{n} is the distance covered after n steps across a room (having width D) where, at the $n^{\text {th }}$ step, we half the distance to the opposite side of the room. • $\left\{s_{n}\right\}$ is nondecreasing and bounded above, so it converges, by MBT; $\lim _{n \rightarrow \infty} s_{n}=D$

- Seems reasonable to write

$$
\frac{D}{2}+\frac{D}{4}+\frac{D}{8}+\frac{D}{16}+\ldots+\frac{D}{2^{n}}+\frac{D}{2^{n+1}}+\ldots=D
$$

despite fact that it's impossible to 'sum' an infinite collection of numbers. In particular, if $D=1$ then

$$
\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots+\frac{1}{2^{n}}+\frac{1}{2^{n+1}}+\ldots=1
$$

- Example:

Consider graphs $y=x^{n}, n=0,1,2,3, \ldots$
Let $a_{n}=$ area between $y=x^{n-1}$ and $y=x^{n}$, $0 \leq x \leq 1$

Define

$$
s_{n}=\text { area lying above } y=x^{n} \text { in unit square }=a_{1}+a_{2}+a_{3}+\ldots+a_{n}
$$

- Compute: $a_{n}=\int_{0}^{1}\left(x^{n-1}-x^{n}\right) d x=\frac{1}{n(n+1)}$

$$
\begin{gathered}
\Longrightarrow \quad s_{n}=\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4}+\ldots+\frac{1}{n(n+1)} \\
=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\ldots+\frac{1}{n(n+1)}
\end{gathered}
$$

- $\left\{s_{n}\right\}$ is nondecreasing and bounded above. By MBT, $\left\{s_{n}\right\}$ converges; $\lim _{n \rightarrow \infty} s_{n}=1$ (the limit is the total area of unit square) - As before, seems reasonable to write:

$$
\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\ldots+\frac{1}{n(n+1)}+\frac{1}{(n+1)(n+2)}+\ldots=1
$$

- Observe: we have just written down two infinite sums but we must be careful with our interpretation: it's literally impossible to 'add' an infinite collection of numbers (not enough time). What the 'infinite sum' means is that we have taken a limit of a sequence whose terms are finite sums.
- An infinite series (or series) is an expression

$$
\sum_{k=1}^{\infty} a_{k}=a_{1}+a_{2}+a_{3}+a_{4}+\ldots
$$

where $a_{1}, a_{2}, a_{3}, \ldots$ is a sequence of real numbers.

Example:

1. $\sum_{k=1}^{\infty} k=1+2+3+4+\ldots$
2. $\sum_{k=1}^{\infty} \frac{1}{2^{k}}=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots$
3. $\sum_{k=1}^{\infty} \frac{1}{k(k+1)}=\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4}+\ldots=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\ldots$
4. $\sum_{k=1}^{\infty} \frac{1}{k!}=\frac{1}{1}+\frac{1}{2}+\frac{1}{6}+\frac{1}{24}+\ldots$

Aim: determine whether a series $\sum_{k=1}^{\infty} a_{k}$ is meaningful i.e. does it converge to a finite real number? need to make this notion rigorous.

- The $n^{t h}$ partial sum of a series $\sum_{k=1}^{\infty} a_{k}$ is the (finite number)

$$
s_{n}=a_{1}+a_{2}+\ldots+a_{n}
$$

Say the series $\sum_{k=1}^{\infty} a_{k}$ converges if the sequence of partial sums $\left\{s_{n}\right\}$ converges i.e. $S=\lim _{n \rightarrow \infty} s_{n}$. In this case, we write $\sum_{k=1}^{\infty} a_{k}=S$.

- Note: if a series converges then we have (by definition) $\sum_{k=1}^{\infty} a_{k}=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} a_{k}$
- Recall: (Sigma Notation) Given a finite collection of numbers a_{1}, \ldots, a_{n} we denote

$$
\sum_{k=1}^{n} a_{k}=a_{1}+a_{2}+\ldots+a_{k}
$$

The symbol \sum is the Greek capital letter sigma.

