

Contact: gwmelvin@colby.edu

September 10 Summary

SUPPLEMENTARY REFERENCES:

KEYWORDS: Monotonic Bounded Theorem, series

MONOTONIC BOUNDED THEOREM; SERIES

• Recall: a sequence is a list of real numbers

 $a_1, a_2, a_3, a_4, \ldots$

We represent sequences via their graph to better illustrate their behaviour.

• We introduced notion of a sequence $\{a_n\}$ converging to L; L is the limit of the sequence, write $L = \lim_{n \to \infty} a_n$.

Example:

- 1. $\lim_{n\to\infty} \frac{a}{n^p} = 0$, for a constant and p > 0;
- 2. We can use LIMIT LAWS (Theorem 1, Section 11.1)

$$\lim_{n \to \infty} \frac{2n+1}{3n^2+2} = \lim_{n \to \infty} \frac{n(2+1/n)}{n^2(3+2/n^2)} = \lim_{n \to \infty} \left(\frac{1}{n} \cdot \frac{2+1/n}{3+2/n^2}\right) = \left(\lim_{n \to \infty} \frac{1}{n}\right) \frac{\lim_{n \to \infty} (2+1/n)}{\lim_{n \to \infty} (3+2/n^2)} = 0 \cdot \frac{2}{3} = 0$$

• Squeeze Theorem: use known behaviour of sequences to determine behaviour of a new sequence e.g. $a_n = \frac{\sin(3n^2+1)}{n^3}$,

$$-1 \le \sin(3n^2 + 1) \le 1 \implies -\frac{1}{n^3} \le \frac{\sin(3n^2 + 1)}{n^3} \le \frac{1}{n^3}$$

Squueeeeeze: $\lim_{n \to \infty} -\frac{1}{n^3} = \lim_{n \to \infty} \frac{1}{n^3} = 0$, hence $\lim_{n \to \infty} a_n = 0$, by Squeeze Theorem.

Determining convergence is a two-step process: (1) show that a sequence converges; (2) determine the limit. Sometimes it's sufficient to show that a sequence converges without finding its limit.

- Observe: if a sequence $\{a_n\}$ is nondecreasing then two possibilities
 - 1. $\{a_n\}$ unbounded above,
 - 2. $\{a_n\}$ bounded above.

this case, the sequence $\{a_n\}$ is

- 1. divergent (to $+\infty$),
- 2. convergent.

• <u>Monotonic Bounded Theorem</u> (MBT)

If $\{a_n\}$ is $\begin{cases} nondecreasing \\ nonincreasing \end{cases}$ and $\begin{cases} bounded above \\ bounded below \end{cases}$ then $\{a_n\}$ is convergent.

• **Remark:** MBT only shows that $\lim a_n$ exists but does not specify $\lim a_n$.

Example: (Related to Zeno's Paradox of tortoise and Achilles)

I walk across a room having width D metres as follows:

- (STEP 1) Half distance to opposite side of room
- (STEP 2) Half remaining distance at STEP 1
- (STEP 3) Half remaining distance at STEP 2
- :
- (STEP n) Half remaining distance at STEP n-1.

Let

 s_n = distance covered after STEP n (in metres)

Then,

$$s_{1} = \frac{D}{2}$$

$$s_{2} = \frac{D}{2} + \frac{1}{2}\left(D - \frac{D}{2}\right) = \frac{D}{2} + \frac{D}{4}$$

$$s_{3} = \frac{D}{2} + \frac{D}{4} + \frac{1}{2}\left(D - \frac{D}{2} + \frac{D}{4}\right) = \frac{D}{2} + \frac{D}{4} + \frac{D}{8}$$

$$\vdots$$

$$s_{n} = \frac{D}{2} + \frac{D}{4} + \dots + \frac{D}{2^{n-1}} + \frac{D}{2^{n}}$$

The sequence $\{s_n\}$ is

- nondecreasing $(s_n \text{ is obtained from } s_{n-1} \text{ by adding on a positive value} = \text{half}$ the remaining distance to the opposite side of the room)
- bounded above (an upper bound is D)

Hence, by MBT, the sequence is convergent i.e. if we take an 'infinite' number of steps then we cover a finite distance.