SEPTEMBER 10 SUMMARY

Supplementary References:

- Multivariable Calculus..., Ostebee-Zorn, Section 11.1-2

Keywords: Monotonic Bounded Theorem, series

Monotonic Bounded Theorem; Series

- Recall: a sequence is a list of real numbers

$$
a_{1}, a_{2}, a_{3}, a_{4}, \ldots
$$

We represent sequences via their graph to better illustrate their behaviour.

- We introduced notion of a sequence $\left\{a_{n}\right\}$ converging to $L ; L$ is the limit of the sequence, write $L=\lim _{n \rightarrow \infty} a_{n}$.

Example:

1. $\lim _{n \rightarrow \infty} \frac{a}{n^{p}}=0$, for a constant and $p>0$;
2. We can use limit laws (Theorem 1, Section 11.1)

$$
\lim _{n \rightarrow \infty} \frac{2 n+1}{3 n^{2}+2}=\lim _{n \rightarrow \infty} \frac{n(2+1 / n)}{n^{2}\left(3+2 / n^{2}\right)}=\lim _{n \rightarrow \infty}\left(\frac{1}{n} \cdot \frac{2+1 / n}{3+2 / n^{2}}\right)=\left(\lim _{n \rightarrow \infty} \frac{1}{n}\right) \frac{\lim _{n \rightarrow \infty}(2+1 / n)}{\lim _{n \rightarrow \infty}\left(3+2 / n^{2}\right)}=0 \cdot \frac{2}{3}=0
$$

- Squeeze Theorem: use known behaviour of sequences to determine behaviour of a new sequence e.g. $a_{n}=\frac{\sin \left(3 n^{2}+1\right)}{n^{3}}$,

$$
-1 \leq \sin \left(3 n^{2}+1\right) \leq 1 \quad \Longrightarrow \quad-\frac{1}{n^{3}} \leq \frac{\sin \left(3 n^{2}+1\right)}{n^{3}} \leq \frac{1}{n^{3}}
$$

Squueeeeeeze: $\lim -\frac{1}{n^{3}}=\lim \frac{1}{n^{3}}=0$, hence $\lim a_{n}=0$, by Squeeze Theorem.
Determining convergence is a two-step process: (1) show that a sequence converges; (2) determine the limit. Sometimes it's sufficient to show that a sequence converges without finding its limit.

- Observe: if a sequence $\left\{a_{n}\right\}$ is nondecreasing then two possibilities

1. $\left\{a_{n}\right\}$ unbounded above,
2. $\left\{a_{n}\right\}$ bounded above.

this case, the sequence $\left\{a_{n}\right\}$ is
3. divergent (to $+\infty$),
4. convergent.

- Monotonic Bounded Theorem (MBT)

If $\left\{a_{n}\right\}$ is $\left\{\begin{array}{l}\text { nondecreasing } \\ \text { nonincreasing }\end{array}\right.$ and $\left\{\begin{array}{l}\text { bounded above } \\ \text { bounded below }\end{array}\right.$ then $\left\{a_{n}\right\}$ is convergent.

- Remark: MBT only shows that $\lim a_{n}$ exists but does not specify $\lim a_{n}$.

Example: (Related to Zeno's Paradox of tortoise and Achilles)

I walk across a room having width D metres as follows:

- (STEP 1) Half distance to opposite side of room
- (STEP 2) Half remaining distance at STEP 1
- (STEP 3) Half remaining distance at STEP 2
-
- (STEP n) Half remaining distance at STEP $n-1$.

Let

$$
s_{n}=\text { distance covered after STEP } n \text { (in metres) }
$$

Then,

$$
\begin{gathered}
s_{1}=\frac{D}{2} \\
s_{2}=\frac{D}{2}+\frac{1}{2}\left(D-\frac{D}{2}\right)=\frac{D}{2}+\frac{D}{4} \\
s_{3}=\frac{D}{2}+\frac{D}{4}+\frac{1}{2}\left(D-\frac{D}{2}+\frac{D}{4}\right)=\frac{D}{2}+\frac{D}{4}+\frac{D}{8} \\
\vdots \\
s_{n}=\frac{D}{2}+\frac{D}{4}+\ldots+\frac{D}{2^{n-1}}+\frac{D}{2^{n}}
\end{gathered}
$$

The sequence $\left\{s_{n}\right\}$ is

- nondecreasing (s_{n} is obtained from s_{n-1} by adding on a positive value $=$ half the remaining distance to the opposite side of the room)
- bounded above (an upper bound is D)

Hence, by MBT, the sequence is convergent i.e. if we take an 'infinite' number of steps then we cover a finite distance.

