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MONOTONIC BOUNDED THEOREM; SERIES
e Recall: a sequence is a list of real numbers
ay,dg, 3,04, - . -
We represent sequences via their graph to better illustrate their behaviour.

e We introduced notion of a sequence {a,} converging to L; L is the limit of the
sequence, write L = lim a,,.
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2. We can use LIMIT LAWS (Theorem 1, Section 11.1)
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e Squeeze Theorem: use known behaviour of sequences to determine behaviour of a
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Squueeeeeeze: lim—ni3 = lim # =0, hence lima, =0, by Squeeze Theorem.

Determining convergence is a two-step process: (1) show that a sequence converges;
(2) determine the limit. Sometimes it’s sufficient to show that a sequence converges
without finding its limit.

e Observe: if a sequence {a,} is nondecreasing then two possibilities

1. {a,} unbounded above,

2. {a,} bounded above.
) Y

N K AN

X A e e e e e e — - =

X X X e
x X X X

X X
N unbounded Ve bounded above

> N > N

0 0 In

this case, the sequence {a,} is




1. divergent (to +o0),

2. convergent.

e Monotonic Bounded Theorem (MBT)
If {a,} is {

nondecreasing bounded above )
then {a,} is convergent.

bounded below

nonincreasing

e Remark: MBT only shows that lima,, exists but does not specify lima,,.

Example: (Related to Zeno’s Paradox of tortoise and Achilles)

I walk across a room having width D metres as follows:

(STEP 1) Half distance to opposite side of room

(STEP 2) Half remaining distance at STEP 1

(STEP 3) Half remaining distance at STEP 2

(STEP n) Half remaining distance at STEP n - 1.

Let
s, = distance covered after STEP n (in metres)
Then,
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The sequence {s,} is

e nondecreasing (s, is obtained from s,_; by adding on a positive value = half
the remaining distance to the opposite side of the room)

e bounded above (an upper bound is D)

Hence, by MBT, the sequence is convergent i.e. if we take an ‘infinite’ number of
steps then we cover a finite distance.



