Contact: gwmelvin@colby.edu

October 3 Summary

Supplementary References:

- Multivariable Calculus..., Ostebee-Zorn, Section 11.7

Keywords: Taylor series

TAYLOR SERIES

- Recall: If $f(x)$ can be represented by a power series on some interval $I, f(x)=$ $\sum_{k=0}^{\infty} a_{k}(x-c)^{k}$, then $a_{k}=\frac{f^{(k)}(c)}{k!}$.
- Question: What functions admit power series representations?
- Remark: any function must be infinitely differentiable.
- Approach to question: let $f(x)$ be infinitely differentiable on I.

1. Associate a power series to $f(x)$
2. Check when power series equals $f(x)$.

- Let $f(x)$ be an infinitely differentiable function. Define the Taylor series associated to $f(x)$ centred at c to be

$$
\sum_{k=0}^{\infty} \frac{f^{(k)}(c)}{k!}(x-c)^{k}=f(c)+f^{\prime}(c)+\frac{f^{\prime \prime}(c)}{2!}(x-c)^{2}+\frac{f^{\prime \prime \prime}(c)}{3!}(x-c)^{3}+\ldots
$$

- Remark: we are not (yet) saying that the Taylor series equals $f(x)$. However, the Taylor series does equal $f(x)$ at $x=c$.
- The Taylor series associated to $f(x)$ centred at $c=0$ is also called a Maclaurin series.

Example:

1. Let $f(x)=\sin (x), c=0$. The Maclaurin series is

$$
\sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} x^{k}=f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\frac{f^{\prime \prime \prime}(0)}{3!} x^{3}+\ldots
$$

We compute

$$
\begin{array}{rll}
f(x)=\sin (x) & \Longrightarrow & f(0)=0 \\
f^{\prime}(x)=\cos (x) & \Longrightarrow & f^{\prime}(0)=1 \\
f^{\prime \prime}(x)=-\sin (x) & \Longrightarrow & f^{\prime \prime}(0)=0 \\
f^{\prime \prime \prime}(x)=-\cos (x) & \Longrightarrow & f^{\prime \prime \prime}(0)=-1 \\
f^{\prime \prime \prime \prime}(x)=\sin (x) & \Longrightarrow & f^{\prime \prime \prime \prime}(0)=0
\end{array}
$$

Then, Maclaurin series is

$$
x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\ldots=\sum_{k=0}^{\infty}(-1)^{k+1} \frac{x^{2 k+1}}{(2 k+1)!}
$$

The Maclaurin series converges for all x.
2. $f(x)=\ln (x), c=1$. The Taylor series is

$$
\sum_{k=0}^{\infty} \frac{f^{(k)}(1)}{k!}(x-1)^{k}=f(1)+f^{\prime}(1)(x-1)^{k}+\frac{f^{\prime \prime}(1)}{2!}(x-1)^{2}+\ldots
$$

Compute

$$
f^{(k)}(x)=\left\{\begin{array}{ll}
\frac{(k-1)!}{x^{k}}, & k \text { odd } \\
-\frac{(k-1)!}{x^{k}}, & k \text { even }
\end{array} \quad \Longrightarrow \quad f^{(k)}(1)= \begin{cases}(k-1)!, & k \text { odd } \\
-(k-1)!, & k \text { even }\end{cases}\right.
$$

Hence, Taylor series is

$$
\begin{gathered}
\sum_{k=1}^{\infty}(-1)^{k+1} \frac{(k-1)!}{k!}(x-1)^{k} \\
=(x-1)-\frac{(x-1)^{2}}{2}+\frac{(x-1)^{3}}{3}-\frac{(x-1)^{4}}{4}+\ldots
\end{gathered}
$$

The Taylor series converges for $|x-1|<1$.

- Remark: If let we let $x=y+1$ then the above Taylor series becomes

$$
y-\frac{y^{2}}{2}+\frac{y^{3}}{3}+\frac{y^{4}}{4}-\ldots
$$

We've seen that this series equals $\ln (1+y)$, whenever $|y|<1$. Hence, for all $|x-1|<1$ we have
$\ln (x)=\ln (y+1)=y-\frac{y^{2}}{2}+\frac{y^{3}}{3}+\frac{y^{4}}{4}-\ldots=(x-1)-\frac{(x-1)^{2}}{2}+\frac{(x-1)^{3}}{3}-\frac{(x-1)^{4}}{4}+\ldots$
That is, for $|x-1|<1$, the Taylor series of $f(x)=\ln (x)$ centred at $c=1$ equals $f(x)$!
Some Maclaurin Series

- $f(x)=\sin (x), \quad \sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 k+1}}{(2 k+1)!}$
- $f(x)=\cos (x), \quad \sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 k}}{(2 k)!}$
- $f(x)=e^{x}, \quad \sum_{k=0}^{\infty} \frac{x^{k}}{k!}$

The above series converge for all x. We've already seen that the Maclaurin Series for $f(x)=e^{x}$ is equal to $f(x)$.
Fact: Each of the above functions equals its Maclaurin series, for all x.

