Contact: gwmelvin@colby.edu

## October 2 Summary

Supplementary References:

- Multivariable Calculus..., Ostebee-Zorn, Section 11.6

Keywords: power series, representing functions as power series

## Properties of Power Series

- Recall: A function $f(x)=\sum_{k=0}^{\infty} a_{k}(x-c)^{k}$, with domain $I$, has the following properties:

1. $f^{\prime}(x)$ is obtained by differentiating $f(x)$ term-by-term and domain of $f^{\prime}(x)$ is I,
2. $\int f(x) d x$ is obtained by integrating term-by-term and domain of $\int f(x) d x$ is I.

## Example:

1. $f(x)=\frac{1}{x+x}$, with domain $I=(-1,1)$. We can write

$$
f(x)=\frac{1}{1+x}=\frac{1}{1-(-x)}=1-x+x^{2}-x^{3}+x^{4}-x^{5}+\ldots
$$

Integrating, we have

$$
\begin{gathered}
\ln (1+x)+C=\int f(x) d x=\int\left(1-x+x^{2}-x^{3}+x^{4}-x^{5}+\ldots\right) d x \\
=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\ldots, \quad \text { valid whenever }|x|<1
\end{gathered}
$$

Substituting $x=0$ gives $C=0$. Note
$\ln (2)=-\ln (1 / 2)=-\ln (1+(-1 / 2))=\frac{1}{2}+\frac{1}{2 \cdot 4}+\frac{1}{3 \cdot 8}+\frac{1}{4 \cdot 16}+\ldots=\sum_{k=1}^{\infty} \frac{1}{k \cdot 2^{k}}$
Therefore, we've been able to determine the limit of the series $\sum_{k=1}^{\infty} \frac{1}{k \cdot 2^{k}}=\ln (2)$ using power series representations of functions.
2. Let $f(x)=e^{-x^{2}}=\sum_{k=0}^{\infty}=\frac{\left(-x^{2}\right)^{k}}{k!} 1-x^{2}+\frac{x^{4}}{2!}-\frac{x^{6}}{3!}+\ldots$.

Fact: there is no elementary antiderivative of $f(x)$ - this means it's impossible to find an antiderivative of $f(x)$ that is an expression involving all standard functions in calculus. However, $f(x)$ is continuous and therefore integrable i.e. $\int_{0}^{1} f(x) d x$ can be determined. (Also, an antiderivative of $f(x)$ does exist, by

Fundamental Theorem of Calculus). Using the above power series expansion, we have

$$
\begin{gathered}
s=\int_{0}^{1} f(x) d x=\int_{0}^{1}\left(1-x^{2}+\frac{x^{4}}{2!}-\frac{x^{6}}{3!}+\ldots\right) d x \\
=\left[x-\frac{x^{3}}{3}+\frac{x^{5}}{5 \cdot 2!}-\frac{x^{7}}{7 \cdot 3!}+\ldots\right]_{0}^{1} \\
=1-\frac{1}{3}+\frac{1}{5 \cdot 2!}-\frac{1}{7 \cdot 3!}+\ldots=\sum_{k=0}^{\infty}(-1)^{k} \frac{1}{(2 k+1) \cdot k!}
\end{gathered}
$$

This is an alternating series so that, for example, we know $\left|s-s_{10}\right|<\frac{1}{23 \cdot 11!} \approx$ 0.000000001

- Power series representations also allow us to determine limits without L'Hopital's rule: e.g.

$$
\lim _{x \rightarrow 0} \frac{e^{x}-1}{x}=\lim _{x \rightarrow 0} \frac{1+x+x^{2} / 2!+\ldots-1}{x}=\lim _{x \rightarrow 0} 1+\frac{x}{2!}+\frac{x^{2}}{3!}=1
$$

- Basic Question: Let $f(x)$ be a function. Is it possible to represent $f(x)$ on some interval using a power series?


## - (First Answer)

- Not for any function: e.g. $f(x)=|x|$, centre $c=0$. Can't represent as a power series centred at $c=0$ since $f^{\prime}(0)$ DNE.
- (Non-trivial) Define $f(x)=\left\{\begin{array}{l}e^{-1 / x}, \quad x>0 \\ 0, \quad x \leq 0\end{array}\right.$.

Fact: $f(x)$ is differentiable everywhere but there's no series expansion with centre $c=0$.

## Necessary conditions:

- If $f(x)$ can be represented as a power series on $I$ then $f^{(k)}(x)$ exists for all $k$ and $f^{(k)}(x)$ defined on $I$.
- If $f(x)=a_{0}+a_{1}(x-c)+a_{2}(x-c)^{2}+\ldots$ then

$$
\begin{gathered}
f(c)=a_{0}, \quad f^{\prime}(c)=a_{1}, \quad f^{\prime \prime}(c)=2 a_{2}, \quad f^{\prime \prime \prime}(c)=3.2 a_{3} \\
\Longrightarrow a_{k}=\frac{f^{(k)}(c)}{k!}, \quad \text { for every } k \geq 0
\end{gathered}
$$

