October 1 Summary

Supplementary References:

- Multivariable Calculus..., Ostebee-Zorn, Section 11.6

KEYWORDS: power series, interval of convergence, properties of power series

Properties of Power Series

- Given a power series

$$
a_{0}+a_{1}(x-c)+a_{2}(x-c)^{2}+a_{3}(x-c)^{3}+\ldots
$$

one of three situations occur:
(A) power series converges at $x=c$ only: e.g. $\sum_{k=0}^{\infty} k!x^{k}$.
(B) power series converges on a finite interval of form $(c-r, c+r),[c-r, c+r)$, $(c-r, c+r]$, or $[c-r, c+r]$: e.g. $\sum_{k=0}^{\infty} \frac{(x+2)^{k}}{k}$ converges on $[-3,-1)$
(C) power series converges for all x : e.g. $\sum_{k=0}^{\infty} \frac{x^{k}}{k!}$.

We call this (finite/infinite) interval the interval of convergence; r is the radius of convergence.
Properties of power series as functions
Given a power series having interval of convergence I, we can define the function

$$
f(x)=\sum_{k=0}^{\infty} a_{k}(x-c)^{k}, \quad x \text { in } I
$$

- Question: What properties does the function $f(x)$ possess?

Example: Let $f(x)=1+x+x^{2}+x^{3}+\ldots=\frac{1}{1-x}, I=(-1,1)$. Then,

- $f(x)$ is continuous on I
- $f(x)$ is differentiable on I
- $f(x)$ is integrable on I (i.e. there exists an antiderivative)
- Theorem: Let $f(x)=\sum_{k=0}^{\infty} a_{k}(x-c)^{k}$ be a function defined by a power series, with interval of convergence I. Then,

1. $f(x)$ is differentiable on I and

$$
f^{\prime}(x)=a_{1}+2 a_{2}(x-c)+3 a_{3}(x-c)^{2}+4 a_{4}(x-c)^{3}+\ldots
$$

i.e. to obtain $f^{\prime}(x)$ we differentiate the series defining $f(x)$ term-by-term. Moreover, the interval of convergence of $f^{\prime}(x)$ is I.
2. $f(x)$ is integrable on I and

$$
\int f(x) d x=C+a_{0}(x-c)+\frac{a_{1}}{2}(x-c)^{2}+\frac{a_{2}}{3}(x-c)^{3}+\frac{a_{3}}{4}(x-c)^{4}+\ldots
$$

i.e. to obtain $\int f(x) d x$ we integrate the series defining $f(x)$ term-by-term. Moreover, the interval of convergence of $\int f(x) d x$ is I.

Example:

1. Let $f(x)=1+x+x^{2}+x^{3}+\ldots=\frac{1}{1-x}$, with domain $I=(-1,1)$. Then

$$
f^{\prime}(x)=\frac{1}{(1-x)^{2}}=1+2 x+3 x^{2}+4 x^{3}+\ldots=\sum_{k=0}(k+1) x^{k}
$$

and this power series has interval of convergence $I=(-1,1)$.
2. Let $f(x)=\sum_{k=0}^{\infty} \frac{x^{k}}{k!}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots$, having interval of convergence $(-\infty, \infty)$. Then, differentiating term-by-term

$$
f^{\prime}(x)=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots=f(x)
$$

FACT: Any function satisfying $f^{\prime}(x)=f(x)$ must be of the form $f(x)=A e^{x}$, for some constant A. Since $f(0)=1$, we have $A=1$. Hence, $f(x)=e^{x}$ i.e.

$$
e^{x}=\sum_{k=0}^{\infty} \frac{x^{k}}{k!}
$$

Similarly, $e^{-x}=\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{k}}{k!}$.

