

Contact: gwmelvin@colby.edu

October 1 Summary

SUPPLEMENTARY REFERENCES:

- Multivariable Calculus..., Ostebee-Zorn, Section 11.6

KEYWORDS: power series, interval of convergence, properties of power series

PROPERTIES OF POWER SERIES

• Given a power series

$$a_0 + a_1(x-c) + a_2(x-c)^2 + a_3(x-c)^3 + \dots$$

one of three situations occur:

(A) power series converges at x = c only: e.g. $\sum_{k=0}^{\infty} k! x^k$.

(B) power series converges on a finite interval of form (c - r, c + r), [c - r, c + r), (c - r, c + r], or [c - r, c + r]: e.g. $\sum_{k=0}^{\infty} \frac{(x+2)^k}{k}$ converges on [-3, -1)

(C) power series converges for all x: e.g. $\sum_{k=0}^{\infty} \frac{x^k}{k!}$.

We call this (finite/infinite) interval the **interval of convergence**; r is the **radius** of convergence.

Properties of power series as functions

Given a power series having interval of convergence I, we can define the function

$$f(x) = \sum_{k=0}^{\infty} a_k (x-c)^k, \quad x \text{ in } I$$

• Question: What properties does the function f(x) possess?

Example: Let $f(x) = 1 + x + x^2 + x^3 + \ldots = \frac{1}{1-x}$, I = (-1, 1). Then,

- f(x) is continuous on I
- f(x) is differentiable on I
- f(x) is integrable on I (i.e. there exists an antiderivative)

• **Theorem:** Let $f(x) = \sum_{k=0}^{\infty} a_k (x-c)^k$ be a function defined by a power series, with interval of convergence *I*. Then,

1. f(x) is differentiable on I and

$$f'(x) = a_1 + 2a_2(x-c) + 3a_3(x-c)^2 + 4a_4(x-c)^3 + \dots$$

i.e. to obtain f'(x) we differentiate the series defining f(x) term-by-term. Moreover, the interval of convergence of f'(x) is I.

2. f(x) is integrable on I and

$$\int f(x)dx = C + a_0(x-c) + \frac{a_1}{2}(x-c)^2 + \frac{a_2}{3}(x-c)^3 + \frac{a_3}{4}(x-c)^4 + \dots$$

i.e. to obtain $\int f(x)dx$ we integrate the series defining f(x) term-by-term. Moreover, the interval of convergence of $\int f(x)dx$ is I.

Example:

1. Let $f(x) = 1 + x + x^2 + x^3 + \ldots = \frac{1}{1-x}$, with domain I = (-1, 1). Then $f'(x) = \frac{1}{(1-x)^2} = 1 + 2x + 3x^2 + 4x^3 + \ldots = \sum_{k=0}^{k} (k+1)x^k$

and this power series has interval of convergence I = (-1, 1).

2. Let $f(x) = \sum_{k=0}^{\infty} \frac{x^k}{k!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$, having interval of convergence $(-\infty, \infty)$. Then, differentiating term-by-term

$$f'(x) = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \ldots = f(x)$$

FACT: Any function satisfying f'(x) = f(x) must be of the form $f(x) = Ae^x$, for some constant A. Since f(0) = 1, we have A = 1. Hence, $f(x) = e^x$ i.e.

$$e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!}$$

Similarly, $e^{-x} = \sum_{k=0}^{\infty} (-1)^k \frac{x^k}{k!}.$