

Contact: gwmelvin@colby.edu

MIDTERM 2 PARTIAL REVIEW

• A level curve (having level c) of f(x, y) is the collection of points (x, y) satisfying f(x, y) = c. Level curves are curves in the domain of f(x, y) i.e. they live in \mathbb{R}^2 .

A diagram representing several level curves, labelled by level, is called a **level curve diagram**. Level curve diagrams are also called **contour plots**, borrowing terminology from cartography and topographical maps.

• The graph of f(x, y) is the collection of all points $(x, y, z) \in \mathbb{R}^3$ satisfying z = f(x, y). The graph of a function lives in \mathbb{R}^3 .

Contour plot (left) and graph (right) of $f(x, y) = x^2 + y^2$.

• The **dot product** $\mathbf{u} \cdot \mathbf{v}$ is an operation on two vectors \mathbf{u}, \mathbf{v} that produces a scalar quantity. The dot product is very useful for geometry because

$$\mathbf{u} \cdot \mathbf{v} = |\mathbf{u}| |\mathbf{v}| \cos \theta$$

where $0 \leq \theta \leq \pi$ is the angle between **u** and **v**.

The vector parallel to **v** having length $|\mathbf{u}| \cos \theta$, $\left(\frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{v}|^2}\right) \mathbf{v}$, is called the vector projection of **u** on **v**.

• The cross product $\mathbf{u} \times \mathbf{v}$ is an operation on two vectors $\mathbf{u}, \mathbf{v} \in \mathbb{R}^3$ that produces a vector quantity. The vector $\mathbf{u} \times \mathbf{v}$ is perpendicular to both \mathbf{u} and \mathbf{v} . We have

$$|\mathbf{u} \times \mathbf{v}| = |\mathbf{u}| |\mathbf{v}| \sin \theta$$

The cross product is defined only for vectors in \mathbb{R}^3 . It is important to remember the geometric properties of the cross product.

• Given two points $P = (a, b, c), Q = (d, e, f) \in \mathbb{R}^3$, the displacement vector from P to Q is

$$\overrightarrow{PQ} = \overrightarrow{OQ} - \overrightarrow{OP} = (d, e, f) - (a, b, c) = (d - a, e - b, f - c)$$

• To define a line L in \mathbb{R}^3 you need a **point on the line** P and a direction vector $\mathbf{u} \in \mathbb{R}^3$ parallel to L:

$$L: P+t\mathbf{u}, t \in \mathbb{R}$$

For example, the line passing through the two points P = (1, 2, 1) and Q = (3, 3, 3) is found as follows: let $\mathbf{u} = \overrightarrow{PQ} = (2, 1, 2)$. Then, we parameterise the line as

$$\mathbf{r}(t) = (1, 2, 1) + t(2, 1, 2) = (1 + 2t, 2 + t, 1 + 2t), \quad t \in \mathbb{R}$$

You should know how to recognise parameterised lines.

• To define a plane Π you need a point on the plane P and a normal vector $\mathbf{n} = (a, b, c) \in \mathbb{R}^3$. The normal vector is perpendicular to Π ; there are (infinitely) many choices for \mathbf{n} . The equation of the plane is

$$ax + by + cz = d,$$

where $d = \mathbf{n} \cdot \overrightarrow{OP}$.

For example, to define the plane containing the points P = (1, 0, 0), Q = (0, 1, 0)and R = (0, 0, 1) we need only determine a normal vector **n**. We do this as follows: we take $\mathbf{n} = \overrightarrow{PQ} \times \overrightarrow{PR} = (-1, 1, 0) \times (-1, 0, 1) = (1, 1, 1)$. Then, $d = \mathbf{n} \cdot \overrightarrow{OP} = (1, 1, 1) \cdot (1, 0, 0) = 1$ and the plane is

$$x + y + z = 1$$

• Given a function f(x, y) and P = (a, b) in the domain of f, the **tangent plane to** the graph z = f(x, y) at (a, b, f(a, b)) is the plane defined by the equation

$$z = f(a, b) + f_x(a, b)(x - a) + f_y(a, b)(y - b)$$

• The linear approximation of f(x, y) at P = (a, b) is the linear function

$$L(x,y) = f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b)$$

For (x, y) near (a, b), $f(x, y) \approx L(x, y)$.

• The directional derivative of f(x, y) at P = (a, b) in the direction u (unit vector) is

$$D_{\mathbf{u}}f(a,b) = \lim_{h \to 0} \frac{f(P+h\mathbf{u}) - f(P)}{h} = \nabla f(P) \cdot \mathbf{u}$$

Here $\nabla f(P) = (f_x(P), f_y(P))$ is the gradient of f(x, y) at P.

- $D_{\mathbf{u}}f(P) > 0 \implies f$ is increasing in the direction \mathbf{u} at P.
- $D_{\mathbf{u}}f(P) < 0 \implies f$ is decreasing in the direction \mathbf{u} at P.
- $D_{\mathbf{u}}f(P) = 0 \implies$ there is no change in f in the direction \mathbf{u} at P.
- $\nabla f(P)$ points in the direction of greatest increase of f near P; $\nabla f(P)$ is perpendicular to the level curve of f through P.