Colby

Midterm 2 Partial Review

- A level curve (having level c) of $f(x, y)$ is the collection of points (x, y) satisfying $f(x, y)=c$. Level curves are curves in the domain of $f(x, y)$ i.e. they live in \mathbb{R}^{2}.
A diagram representing several level curves, labelled by level, is called a level curve diagram. Level curve diagrams are also called contour plots, borrowing terminology from cartography and topographical maps.
- The graph of $f(x, y)$ is the collection of all points $(x, y, z) \in \mathbb{R}^{3}$ satisfying $z=$ $f(x, y)$. The graph of a function lives in \mathbb{R}^{3}.

Contour plot (left) and graph (right) of $f(x, y)=x^{2}+y^{2}$.

- The dot product $\mathbf{u} \cdot \mathbf{v}$ is an operation on two vectors \mathbf{u}, \mathbf{v} that produces a scalar quantity. The dot product is very useful for geometry because

$$
\mathbf{u} \cdot \mathbf{v}=|\mathbf{u}||\mathbf{v}| \cos \theta
$$

where $0 \leq \theta \leq \pi$ is the angle between \mathbf{u} and \mathbf{v}.

The vector parallel to \mathbf{v} having length $|\mathbf{u}| \cos \theta,\left(\frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{v}|^{2}}\right) \mathbf{v}$, is called the vector projection of u on v.

- The cross product $\mathbf{u} \times \mathbf{v}$ is an operation on two vectors $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{3}$ that produces a vector quantity. The vector $\mathbf{u} \times \mathbf{v}$ is perpendicular to both \mathbf{u} and \mathbf{v}. We have

$$
|\mathbf{u} \times \mathbf{v}|=|\mathbf{u}||\mathbf{v}| \sin \theta
$$

The cross product is defined only for vectors in \mathbb{R}^{3}. It is important to remember the geometric properties of the cross product.

- Given two points $P=(a, b, c), Q=(d, e, f) \in \mathbb{R}^{3}$, the displacement vector from P to Q is

$$
\overrightarrow{P Q}=\overrightarrow{O Q}-\overrightarrow{O P}=(d, e, f)-(a, b, c)=(d-a, e-b, f-c)
$$

- To define a line L in \mathbb{R}^{3} you need a point on the line P and a direction vector $\mathbf{u} \in \mathbb{R}^{3}$ parallel to L :

$$
L: \quad P+t \mathbf{u}, \quad t \in \mathbb{R}
$$

For example, the line passing through the two points $P=(1,2,1)$ and $Q=(3,3,3)$ is found as follows: let $\mathbf{u}=\overrightarrow{P Q}=(2,1,2)$. Then, we parameterise the line as

$$
\mathbf{r}(t)=(1,2,1)+t(2,1,2)=(1+2 t, 2+t, 1+2 t), \quad t \in \mathbb{R}
$$

You should know how to recognise parameterised lines.

- To define a plane Π you need a point on the plane P and a normal vector $\mathbf{n}=(a, b, c) \in \mathbb{R}^{3}$. The normal vector is perpendicular to Π; there are (infinitely) many choices for \mathbf{n}. The equation of the plane is

$$
a x+b y+c z=d
$$

where $d=\mathbf{n} \cdot \overrightarrow{O P}$.
For example, to define the plane containing the points $P=(1,0,0), Q=(0,1,0)$ and $R=(0,0,1)$ we need only determine a normal vector \mathbf{n}. We do this as follows: we take $\mathbf{n}=\overrightarrow{P Q} \times \overrightarrow{P R}=(-1,1,0) \times(-1,0,1)=(1,1,1)$. Then, $d=\mathbf{n} \cdot \overrightarrow{O P}=$ $(1,1,1) \cdot(1,0,0)=1$ and the plane is

$$
x+y+z=1
$$

- Given a function $f(x, y)$ and $P=(a, b)$ in the domain of f, the tangent plane to the graph $z=f(x, y)$ at $(a, b, f(a, b))$ is the plane defined by the equation

$$
z=f(a, b)+f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)
$$

- The linear approximation of $f(x, y)$ at $P=(a, b)$ is the linear function

$$
L(x, y)=f(a, b)+f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)
$$

For (x, y) near $(a, b), f(x, y) \approx L(x, y)$.

- The directional derivative of $f(x, y)$ at $P=(a, b)$ in the direction \mathbf{u} (unit vector) is

$$
D_{\mathbf{u}} f(a, b)=\lim _{h \rightarrow 0} \frac{f(P+h \mathbf{u})-f(P)}{h}=\nabla f(P) \cdot \mathbf{u}
$$

Here $\nabla f(P)=\left(f_{x}(P), f_{y}(P)\right)$ is the gradient of $f(x, y)$ at P.

- $D_{\mathbf{u}} f(P)>0 \Longrightarrow f$ is increasing in the direction \mathbf{u} at P.
- $D_{\mathbf{u}} f(P)<0 \Longrightarrow f$ is decreasing in the direction \mathbf{u} at P.
- $D_{\mathbf{u}} f(P)=0 \Longrightarrow$ there is no change in f in the direction \mathbf{u} at P.
- $\nabla f(P)$ points in the direction of greatest increase of f near $P ; \nabla f(P)$ is perpendicular to the level curve of f through P.

