
Math 122 Homework 11 Due: December 5, 2018

This is the eleventh homework assignment for Math 122 and it is broken into two parts. The first part of the
homework consists of textbook exercises you should do (and I’ll expect you to do) but you needn’t turn in. As
these exercises will not be graded, if you would like help with them or just want to make sure you’re doing them
correctly, you should (always) feel free to come to office hours (mine or those of the TAs). The second part is
the part you are expected to turn in. More precisely, please complete all problems in Part 2, write up clear and
thorough solutions for them (consistent with the directions given in the syllabus) and hand them in. Your write-ups
are due on Wednesday, December 5th at the beginning of class. As always, please come and see me early if you get
stuck on any part of this assignment. I am here to help!

Part 1 (Do not turn in)

Exercise 1. Please do Exercises # 1 (only a), 3 (only a), 25 and 29 from section 14.1

Exercise 2. Please do Exercises #1-13 odd, 15, 17, 23, from section 14.2

Exercise 3. Please do Exercises #9-19 odd, 23, 29, 31 from section 14.3

Part 2 (Turn this in!)

Problem 1. In this problem you will think about changing the order of integration.

1. Consider the double integral

I =

∫ ∫
R

ex/y

y
dA =

∫ 1

0

∫ √x
x

ex/y

y
dydx

(a) Sketch the region R.

(b) What issue arises when you try to compute I using the indicated iterated integral?

(c) By changing the order of integration, determine I.

2. Since changing the order of integration corresponds to changing the order of certain limits, it should not be
surprising to know that this operation holds for functions that are ‘not too badly behaved’.

Fubini’s Theorem: if f(x, y) is continuous on R = [a, b]× [c, d] then∫ ∫
R

f(x, y)dA =

∫ b

a

∫ d

c

f(x, y)dydx =

∫ d

c

∫ b

a

f(x, y)dxdy

In this problem, you will see an instance where changing the order of integration does change the value of a
double integral.

(a) Show that
∂

∂x

(
−x

(x+ y)2

)
=

x− y
(x+ y)3

,
∂

∂y

(
y

(x+ y)2

)
=

x− y
(x+ y)3

(b) By evaluating both double integrals, show that∫ 1

0

∫ 1

0

x− y
(x+ y)3

dxdy 6=
∫ 1

0

∫ 1

0

x− y
(x+ y)3

dydx

(c) Explain why f(x, y) = x−y
(x+y)3 is not continuous on [0, 1]× [0, 1].

Problem 2. For each of the following double integrals, sketch the region of integration R. Then evaluate the integral
by hand, explaining your process.
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1.

∫ 1

0

∫ 4

2

∫ 1

−3
3 dz dx dy

2.

∫ 2

0

∫ 4

x2

x cos(y2) dy dx

3.

∫ 1

0

∫ 1

0

sin(ex) dx dy +

∫ e

1

∫ 1

ln(y)

sin(ex) dx dy

Problem 3. Let D be the region inside the unit circle centered at the origin, let R be the right half of D, and let
B be the bottom half of D. Decide, without calculating the value of any of the integrals, whether each integral is
positive, negative, or zero. Explain your answers.

1.

∫∫
D

1 dA

2.

∫∫
R

5x dA

3.

∫∫
B

5x dA

4.

∫∫
D

ex dA

5.

∫∫
R

x2y3 dA

D
x

y

R
x

y

B
x

y

Problem 4. Before publishing his groundbreaking theory of gravitation, Isaac Newton spent a great deal of time
worrying1. Newton’s theory of gravity says that the gravitational force on an object of mass m due to an object of
mass M is inversely proportional to the square of the distance between those objects. In mathematical form, this is

F = −GmM
r2

er

where er is a unit vector in the direction from M to m, r is the distance between the objects and G is a constant of
proportionality, called the gravitational constant. As it turns out, this force (which is a vector) is gotten from the
gradient of a function φ : R3 → R defined by

φ(r) = φ(x, y, z) = −GM
r

= −G M√
x2 + y2 + z2

(1)

where we shall assume that the object of mass M sits at the origin (0, 0, 0) and the object of mass m sits at the

point (x, y, z), a distance r =
√
x2 + y2 + z2 from (0, 0, 0).

1Classical Dynamics of Particles and Systems. S. Thornton and J. Marion
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1. Show that
F = m∇φ.

Hint: You should note that

er = − (x, y, z)

|(x, y, z)|
= −

(
x√

x2 + y2 + z2
,

y√
x2 + y2 + z2

,
z√

x2 + y2 + z2

)
.

This function φ is called the gravitational potential for the mass M . In some sense, it determines the motion of all
massive objects in space2. And for this reason, we focus out study on φ.

We can now discuss the source of Newton’s great worry. Though Newton’s theory worked spectacularly3, it treats
massive objects (e.g., our Sun) as points in space without mass or volume. This is, of course, nonsense. To account
for realistic massive objects, the gravitational potential must be defined using a triple integral where mass is treated
as being spread continuously over the space it occupies. For example, if the object is a sphere or radius 1 centered
at the origin (0, 0, 0), the gravitational potential is

φ(r) = −G
∫ 2π

0

∫ π

0

∫ 1

0

ρλ2

R
sin(ϕ) dλ dϕdθ (2)

where R2 = λ2 + r2 − 2rλ cosϕ is found using the law of cosines. In this formula (which might look slightly
intimidating, but is pretty simple), ρ is a constant called the mass density and the total mass of the sphere is defined
by

M =

∫ 2π

0

∫ π

0

∫ 1

0

ρλ2 sin(ϕ) dλ dϕdθ.

2. Perform the integration in the equation above for M thus finding a
simple relationship between the total mass M and the mass density ρ.

Looking back to Equation (2), we can invoke Fubini’s theorem4 and simplify to find

φ(r) = −G
∫ 1

0

∫ π

0

∫ 2π

0

ρλ2

R
sin(ϕ) dθ dϕ dλ

= −Gρ
∫ 1

0

∫ π

0

∫ 2π

0

λ2

R
sin(ϕ) dθ dϕ dλ.

Upon noting that the integrand λ2 sin(ϕ)/R is independent of θ, we can iterate the integrals (and carry out the θ
integration) to find

φ(r) = −2πGρ

∫ 1

0

λ2
(∫ π

0

1

R
sin(ϕ)dϕ

)
dλ (3)

where (still) R2 = λ2 + r2 − 2rλ cos(ϕ). We isolate the innermost integral∫ π

0

1

R
sin(ϕ) dϕ (4)

2In fact, φ satisfies Laplace’s equation, ∆φ = φxx + φyy + φzz = 0 (which you should check if you’re sufficiently interested).
3It predicts Kepler’s Laws, for example, though, as Einstein showed, it’s not the final word.
4You can take for granted that Fubini’s Theorem is valid in this case.
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and, by treating λ and r as constant, we make a change of variables from ϕ to R where the relation is specified by

R2 = λ2 + r2 − 2rλ cos(ϕ)

and so
2RdR = 2rλ sin(ϕ) dϕ.

3. Perform this change of variables on the integral (4). You should obtain
an integral of the form ∫ R1

R0

(λ and r stuff) dR

where R0 and R1 are also functions of r and λ.

4. Insert your result from the previous step back into Equation (3) and
simplify as much as possible (without, yet, performing the double
integral).

5. In the case that r > 1, i.e., you’re viewing the gravitational potential
from outside the sphere, the limits of integration R0 and R1 should
simplify considerably upon noting that 0 ≤ λ ≤ 1 < r. Under this
simplification, compute the double integral and simplify. Your resulting
expression φ(r) should now only be a function of r, G and ρ.

6. Finally, using your result from Part 2, put this expression for φ(r) in
terms of r, G and M . Comparing your expression from what we
obtained in (1), does the gravitational potential look any different away
from a point mass as it does from a sphere? Comment on why Newton
can stop worrying.
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