Calculus II: Fall 2017
Review Problem Set
Contact: gmelvin@middlebury.edu

Pre-calculus Cobweb Blaster

The following problems are intended to refresh your knowledge of some precalculus topics.

1. If $m=-1, n=2$, find the value of $m^{2}-2 m n-n^{2}$.
2. What is the slope of the line $3 y+4 x=2$?
3. For which values of x is $3 x+2>0$?
4. Given the formula ${ }_{r, s} \Delta_{t, u}=r u+s-t$, find ${ }_{1,3} \Delta_{2,4}$.
5. For which values of x is $3 x^{2}-2 x-1>0$?
6. Solve for $x: 2 x^{2}+8 x-11=0$.
7. Let $f(x)=\frac{2}{x}-x^{2}$. Find $f(1), f(-1), f(r), f(2-b)$.
8. Sketch the graph of $h(y)=y^{2}-y-2$.
9. State the domain of the function $g(x)=\frac{3 x^{2}+2 x-8}{\left(2 x^{2}-x\right)}$.
10. For what values of a is $3 a+2>2 a-8$?
11. Where does the graph of $f(x)=3 x-2$ intersect the graph of $g(x)=x^{2}$?
12. State the domain of the function $r(t)=\frac{1}{\cos \left(t^{2}\right)-1}$.
13. Given the formula $h(2 x-1)=x^{2}$, find $h(1), h(3)$, and $h(b)$.
14. Given the formula $j\left(i^{2}\right)=i^{2}$, find the value of $j(1), j(2), j(4)$.
15. Given the formulae $x(z)=y(2 z)$ and $y(w)=2 w+1$, find $x(3)$.
16. For each $\theta=\frac{\pi}{2}, \frac{2 \pi}{3}, \frac{7 \pi}{6}$ compute $\cos \theta, \tan \theta, \sec \theta, \csc ^{2} \theta$.
17. Compute $2 \cos ^{2} \theta+2 \sin ^{2} \theta$, where $\theta=\frac{2 \pi}{13}$.

Functions, Limits \& Continuity Cobweb Blaster

1. Suppose that f has domain A and g has domain B.
(a) What is the domain of $f+g$?
(b) What is the domain of $f g$?
(c) What is the domain of f / g ?
2. For which x are the following functions discontinuous? At which of these values x is f continuous from the right, from the left, or neither? (Hint: what is the the graph of f)
(a) $f(x)=\left\{\begin{array}{l}1+x^{2}, \quad \text { if } x \leq 0, \\ 2-x, \text { if } 0<x \leq 2, \\ (x-2)^{2}, \quad \text { if } x>2 .\end{array}\right.$
(b) $f(x)=\left\{\begin{array}{l}x+2, \quad \text { if } x<0, \\ 2 x^{2}, \quad \text { if } 0 \leq x \leq 1, \\ 2-x, \quad \text { if } x>1 .\end{array}\right.$
3. True/False:
(a) If f is a function then $f(s+t)=f(s)+f(t)$.
(b) If $f(s)=f(t)$ then $s=t$.
(c) Let x, y be in the domain of f. If $x<y$ and f is increasing then $f(x)<f(y)$.
(d) A vertical line intersects the graph of f at most once.
(e) A vertical line intersects the graph of f exactly once.
(f) If x is any real number then $x=\sqrt{x^{2}}$.
(g) $\lim _{x \rightarrow 1}\left(\frac{2}{x-4}-\frac{3 x}{x+5}\right)=\lim _{x \rightarrow 1} \frac{2}{x-4}-\lim _{x \rightarrow 1} \frac{3 x}{x+5}$.
(h) If $f(1)>0$ and $f(3)<0$ then there exists some $1<c<3$ such that $f(c)=0$.
(i) If f is continuous at $x=5$ and $f(5)=2$ and $f(4)=3$ then $\lim _{x \rightarrow 2} f\left(4 x^{2}-11\right)=2$.
(j) If f is continuous at $x=a$ then $|f|$ is continuous at $x=a$.
(k) If $|f|$ is continuous at $x=a$ then f is continuous at $x=a$.

Derivative Cobweb Blaster

1. Compute the following derivatives:
2. $\frac{d}{d x}(3 x+1)$
3. $\frac{d}{d x}\left(3 x^{2}\right)$
4. $\frac{d}{d \theta} 2 \cos \left(\theta^{2}\right)$
5. $\frac{d}{d y}\left(\frac{y-3}{y^{3}}\right)$
6. $\frac{d}{d x}\left(\sqrt{x}-\frac{1}{2 x^{2}}\right)$
7. $\frac{d}{d s}\left(s^{2} e^{\cos (s)}\right)$
8. $\frac{d}{d \Delta} \tan (\Delta)$
9. $\frac{d}{d t}\left(\frac{t^{2}-t}{t^{3}+2 t}\right)$
10. $\frac{d}{d x}\left(\frac{x^{3} \sqrt{x}}{x^{-2 / 3}}\right)$
11. $\frac{d}{d \bullet}\left(\bullet\left(\sin \left(2 \bullet{ }^{2}\right)+\frac{1}{\bullet}\right)\right)$
12. (a) Give the definition of the derivative $f^{\prime}(a)$.
(b) Find a function f and a number a such that

$$
\lim _{h \rightarrow 0} \frac{(2+h)^{6}-64}{h}=f^{\prime}(a) .
$$

3. True or False:
(a) If f is continuous at a then f is differentiable at a.
(b) If f is differentiable then $\frac{d}{d x} \sqrt{f(x)}=\frac{f^{\prime}(x)}{2 \sqrt{f(x)}}$.
(c) If f is differentiable then $\frac{d}{d x} f(\sqrt{x})=\frac{f^{\prime}(x)}{2 \sqrt{x}}$.
(d) If $h(t)=t^{5}$ then $\lim _{t \rightarrow 2} \frac{h(t)-h(2)}{t-2}=80$.
(e) $\frac{d^{2} y}{d x^{2}}=\left(\frac{d y}{d x}\right)^{2}$.
(f) Let $f(x)=|x|$. Then, $f^{\prime}(2)$ does not exist.
4. Find $f^{\prime}(x)$ if it is known that

$$
\frac{d}{d x}(f(2 x))=x^{2}
$$

5. Find f^{\prime} in terms of g^{\prime} :
(a) $f(x)=x^{2} g(x)$,
(b) $f(x)=g\left(x^{2}\right)$,
(c) $f(x)=g(g(x))$.
