

Calculus II: Fall 2017 Problem Set 4 Contact: gmelvin@middlebury.edu

Keywords: the exponential function, natural logarithm, inverse functions.

Problems for submission

- A1. In this problem you will show $\exp(x)$ grows faster than x^m , for any natural number m.
 - (a) Let m be a natural number. Show that

 $\exp(x) \ge s_m(x),$ for all $x \ge 0.$

Here $s_m(x)$ is the m^{th} partial sum of the series $1 + \sum_{n=1}^{\infty} \frac{x^n}{n!}$. (*Hint:* $\exp(x)$ is the limit of the increasing sequence $(s_m(x))$.)

(b) Let *m* be a natural number. By considering $\frac{s_{m+1}(x)}{x^m}$, show that

$$\frac{\exp(x)}{x^m} \ge \frac{x}{(m+1)!}, \quad \text{for all } x \ge 0.$$

(c) Explain why

$$\frac{\exp(x)}{r^m}$$

is unbounded as $x \to \infty$. Deduce that $\exp(x)$ grows faster than x^m , for any m.

A2. (a) Let $f(x) = 1 + \sqrt{2 + 3x}$.

- i. Determine the domain A of f(x).
- ii. Determine the range B of f(x).
- iii. Explain why f(x) is one-to-one.
- iv. Determine the inverse function $f^{-1}(y)$, taking care to describe its domain and range.
- (b) Let n be a natural number. Consider the function

$$g_n(x) = \begin{cases} x, \text{ if } x \neq 1, 2, 3, \dots, n, \\ x+1, \text{ if } x = 1, 2, \dots, n-1, \\ 1, \text{ if } x = n. \end{cases}$$

- i. Draw the graph of $g_5(x)$. What is its domain and range?
- ii. Show that $g_5(x)$ is one-to-one. Determine the inverse function $g_5^{-1}(y)$.

iii. Show that $g_n(x)$ is one-to-one. Determine the inverse function $g_n^{-1}(y)$.

A3. In this problem you will determine the standard logarithm rules using the definition of $\log(x)$ as an antiderivative of 1/t.

Recall that $\log(x) = \exp^{-1}(x)$, the inverse function of $\exp(x)$, was determined (October 12 Lecture) to be the function

$$\log(x) \stackrel{def}{=} \int_{1}^{x} \frac{dt}{t}$$

(a) Let c > 0 be a real number. Define $f(x) = \log(xc)$. Using the Fundamental Theorem of Calculus and the chain rule, show that

$$f'(x) = \frac{1}{x}$$

- (b) Deduce that there is some constant K such that $f(x) = \log(x) + K$. (*Hint: if* g(x) and h(x) are two functions such that g'(x) = h'(x) then g(x) = h(x) + K, for some constant K)
- (c) Show that $K = \log(c)$. (*Hint: consider* f(1)). Deduce that

$$\log(xc) = \log(x) + \log(c) \tag{(*)}$$

for any x, c > 0.

(d) Let x > 0. By considering the fact that $1 = x \cdot x^{-1}$, use (*) to show that

$$\log(x^{-1}) = -\log(x)$$

(e) Let x > 0. Using induction show that

$$\log(x^n) = n \log(x), \qquad n = 1, 2, 3, \dots$$

Deduce that

 $\log(x^n) = n\log(x)$

for any integer n (not necessarily positive).

A4. Show that

$$\log(x) < x - 1$$
, for any $x > 0$.

Deduce that $\log(x) < x^k$, for any natural number k and any x > 2.

Additional recommended problems (not for submission)

B1. Let $f(x) = \frac{1-\sqrt{x}}{1+\sqrt{x}}$.

- (a) Show that $f(x) = \frac{2}{1+\sqrt{x}} 1$.
- (b) Determine the domain A of f(x).
- (c) Show that the range B of f(x) is the collection of all real numbers $-1 < y \le 1$.
- (d) Explain why f(x) is strictly decreasing. Deduce that f(x) is one-to-one.
- (e) Determine the inverse function $f^{-1}(y)$.
- B2. (a) Verify the following identities

$$a^{4} - b^{4} = (a - b)(a^{3} + a^{2}b + ab^{2} + b^{3}),$$
$$a^{5} - b^{5} = (a - b)(a^{4} + a^{3}b + a^{2}b^{2} + ab^{3} + b^{4})$$

(b) Let a, b be real numbers. Using induction show that

$$a^{n} - b^{n} = (a - b)(a^{n-1} + a^{n-2}b + a^{n-3}b^{2} + \dots + a^{2}b^{n-3} + ab^{n-2} + b^{n-1}), \quad n = 2, 3, 4, \dots$$

Hint: n = 2 *is the base case. For the inductive step consider*

$$a^{n+1} - b^{n+1} = a^{n+1} - ab^n + ab^n - b^{n+1}$$

B3. Define

$$\sinh(x) = \frac{1}{2} (\exp(x) - \exp(-x)), \text{ and } \cosh(x) = \frac{1}{2} (\exp(x) + \exp(-x))$$

. We call $\sinh(x)$ (pronounced sinch of x) the hyperbolic sine function and $\cosh(x)$ the hyperbolic cosine function.

- (a) Show that $\sinh(-x) = -\sinh(x)$ and $\cosh(-x) = \cosh(x)$.
- (b) Show that $\cosh^2(x) \sinh^2(x) = 1$.
- (c) Show that

$$\frac{d}{dx}\sinh(x) = \cosh(x), \qquad \frac{d}{dx}\cosh(x) = \sinh(x).$$

- (d) Use the derivative of $\sinh(x)$ to explain why it is a strictly increasing function. Deduce that $\sinh(x)$ is one-to-one.
- (e) The domain and range of $\sinh(x)$ is the collection of all real numbers. Hence, its inverse function $\sinh^{-1}(y)$ also has its domain and range being the collection of all real numbers. You will now show that

$$\sinh^{-1}(y) = \log(y + \sqrt{y^2 + 1}).$$

i. Let $x = \sinh^{-1}(y)$. Show that

$$\exp(x) - 2y - \exp(-x) = 0$$

Deduce that

$$\exp(x)^2 - 2y \exp(x) - 1 = 0$$

ii. Use the quadratic formula to show that

$$\exp(x) = y \pm \sqrt{y^2 + 1}$$

- iii. Show that $\exp(x) = y + \sqrt{y^2 + 1}$. (*Hint:* $\exp(x) > 0$ always. Now, consider $y \sqrt{y^2 + 1}$)
- iv. Deduce that

$$\sinh^{-1}(y) = \log(y + \sqrt{y^2 + 1})$$

Challenging Problems

C1. (*) In this problem you will show that Euler's number

$$e = \exp(1) = 1 + \sum_{n=1}^{\infty} \frac{1}{n!} = 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \dots = 2.71828\dots$$

is irrational using a proof by contradiction argument. We will <u>assume</u> that e is, in fact, a rational number (i.e. a ratio of two integers) and derive a statement of absurdity. Hence, it must be the case that e is irrational (any real number must be either rational or irrational).

Assume that e is rational. This means that there are two natural numbers p and q so that

$$e = \frac{p}{q}$$

We will assume that p, q satisfy the condition that p is not a multiple of q.

- (a) Explain why $q \neq 1$. Deduce that q > 1. (*Hint: what would have to be true of e if* q = 1?)
- (b) Let s_m be the m^{th} partial sum of the series $1 + \sum_{n=1}^{\infty} \frac{1}{n!}$. Show that $q!s_q$ is an integer. Deduce that

$$q!(e-s_q)$$

is an integer.

We will now show, by a different argument, that $q!(e-s_q)$ is not an integer. This contradiction of what we've just shown implies that our assumption that e is rational must be a false assumption. Hence, e can't possibly be rational, so it must be an irrational number.

Observe that, in the argument that follows, we never make use of our assumption that e = p/q.

(c) Using the definition of e as the limit of a series, show that

$$e - s_q = \sum_{n=q+1}^{\infty} \frac{1}{n!} = \frac{1}{(q+1)!} + \frac{1}{(q+2)!} + \dots$$

(d) Deduce that

$$q!(e-s_q) = \frac{1}{(q+1)} + \frac{1}{(q+1)(q+2)} + \frac{1}{(q+1)(q+2)(q+3)} + \dots$$

(e) Let

$$a_n = \frac{1}{(q+1)(q+2)\cdots(q+n)}.$$

Show that

$$a_n \le \frac{1}{(q+1)^n}, \qquad n = 1, 2, 3, \dots$$

Deduce that

$$q!(e-s_q) \le \sum_{n=1}^{\infty} \frac{1}{(q+1)^n} = \frac{1}{q} < 1.$$

(f) Recall from Problem A1 that $e > s_q$. Show that

$$0 < q!(e - s_q) < 1.$$

Conclude that $q!(e - s_q)$ can't possibly be an integer.

C2. (***)