Keywords: the exponential function, natural logarithm, inverse functions.

## Problems for submission

A1. In this problem you will show $\exp (x)$ grows faster than $x^{m}$, for any natural number $m$.
(a) Let $m$ be a natural number. Show that

$$
\exp (x) \geq s_{m}(x), \quad \text { for all } x \geq 0
$$

Here $s_{m}(x)$ is the $m^{\text {th }}$ partial sum of the series $1+\sum_{n=1}^{\infty} \frac{x^{n}}{n!}$. (Hint: $\exp (x)$ is the limit of the increasing sequence ( $s_{m}(x)$ ).)
(b) Let $m$ be a natural number. By considering $\frac{s_{m+1}(x)}{x^{m}}$, show that

$$
\frac{\exp (x)}{x^{m}} \geq \frac{x}{(m+1)!}, \quad \text { for all } x \geq 0 .
$$

(c) Explain why

$$
\frac{\exp (x)}{x^{m}}
$$

is unbounded as $x \rightarrow \infty$. Deduce that $\exp (x)$ grows faster than $x^{m}$, for any $m$.
A2. (a) Let $f(x)=1+\sqrt{2+3 x}$.
i. Determine the domain $A$ of $f(x)$.
ii. Determine the range $B$ of $f(x)$.
iii. Explain why $f(x)$ is one-to-one.
iv. Determine the inverse function $f^{-1}(y)$, taking care to describe its domain and range.
(b) Let $n$ be a natural number. Consider the function

$$
g_{n}(x)=\left\{\begin{array}{l}
x, \text { if } x \neq 1,2,3, \ldots, n, \\
x+1, \text { if } x=1,2, \ldots, n-1, \\
1, \text { if } x=n
\end{array}\right.
$$

i. Draw the graph of $g_{5}(x)$. What is its domain and range?
ii. Show that $g_{5}(x)$ is one-to-one. Determine the inverse function $g_{5}^{-1}(y)$.
iii. Show that $g_{n}(x)$ is one-to-one. Determine the inverse function $g_{n}^{-1}(y)$.

A3. In this problem you will determine the standard $\operatorname{logarithm}$ rules using the definition of $\log (x)$ as an antiderivative of $1 / t$.
Recall that $\log (x)=\exp ^{-1}(x)$, the inverse function of $\exp (x)$, was determined (October 12 Lecture) to be the function

$$
\log (x) \stackrel{\operatorname{def}}{=} \int_{1}^{x} \frac{d t}{t}
$$

(a) Let $c>0$ be a real number. Define $f(x)=\log (x c)$. Using the Fundamental Theorem of Calculus and the chain rule, show that

$$
f^{\prime}(x)=\frac{1}{x} .
$$

(b) Deduce that there is some constant $K$ such that $f(x)=\log (x)+K$. (Hint: if $g(x)$ and $h(x)$ are two functions such that $g^{\prime}(x)=h^{\prime}(x)$ then $g(x)=h(x)+K$, for some constant $\left.K\right)$
(c) Show that $K=\log (c)$. (Hint: consider $f(1))$. Deduce that

$$
\begin{equation*}
\log (x c)=\log (x)+\log (c) \tag{*}
\end{equation*}
$$

for any $x, c>0$.
(d) Let $x>0$. By considering the fact that $1=x \cdot x^{-1}$, use $(*)$ to show that

$$
\log \left(x^{-1}\right)=-\log (x)
$$

(e) Let $x>0$. Using induction show that

$$
\log \left(x^{n}\right)=n \log (x), \quad n=1,2,3, \ldots
$$

Deduce that

$$
\log \left(x^{n}\right)=n \log (x)
$$

for any integer $n$ (not necessarily positive).
A4. Show that

$$
\log (x)<x-1, \quad \text { for any } x>0
$$

Deduce that $\log (x)<x^{k}$, for any natural number $k$ and any $x>2$.

## Additional recommended problems (not for submission)

B1. Let $f(x)=\frac{1-\sqrt{x}}{1+\sqrt{x}}$.
(a) Show that $f(x)=\frac{2}{1+\sqrt{x}}-1$.
(b) Determine the domain $A$ of $f(x)$.
(c) Show that the range $B$ of $f(x)$ is the collection of all real numbers $-1<y \leq 1$.
(d) Explain why $f(x)$ is strictly decreasing. Deduce that $f(x)$ is one-to-one.
(e) Determine the inverse function $f^{-1}(y)$.

B2. (a) Verify the following identities

$$
\begin{gathered}
a^{4}-b^{4}=(a-b)\left(a^{3}+a^{2} b+a b^{2}+b^{3}\right), \\
a^{5}-b^{5}=(a-b)\left(a^{4}+a^{3} b+a^{2} b^{2}+a b^{3}+b^{4}\right)
\end{gathered}
$$

(b) Let $a, b$ be real numbers. Using induction show that

$$
a^{n}-b^{n}=(a-b)\left(a^{n-1}+a^{n-2} b+a^{n-3} b^{2}+\ldots+a^{2} b^{n-3}+a b^{n-2}+b^{n-1}\right), \quad n=2,3,4, \ldots
$$

Hint: $n=2$ is the base case. For the inductive step consider

$$
a^{n+1}-b^{n+1}=a^{n+1}-a b^{n}+a b^{n}-b^{n+1}
$$

B3. Define

$$
\sinh (x)=\frac{1}{2}(\exp (x)-\exp (-x)), \quad \text { and } \quad \cosh (x)=\frac{1}{2}(\exp (x)+\exp (-x))
$$

. We call $\sinh (x)$ (pronounced sinch of $x)$ the hyperbolic sine function and $\cosh (x)$ the hyperbolic cosine function.
(a) Show that $\sinh (-x)=-\sinh (x)$ and $\cosh (-x)=\cosh (x)$.
(b) Show that $\cosh ^{2}(x)-\sinh ^{2}(x)=1$.
(c) Show that

$$
\frac{d}{d x} \sinh (x)=\cosh (x), \quad \frac{d}{d x} \cosh (x)=\sinh (x) .
$$

(d) Use the derivative of $\sinh (x)$ to explain why it is a strictly increasing function. Deduce that $\sinh (x)$ is one-to-one.
(e) The domain and range of $\sinh (x)$ is the collection of all real numbers. Hence, its inverse function $\sinh ^{-1}(y)$ also has its domain and range being the collection of all real numbers. You will now show that

$$
\sinh ^{-1}(y)=\log \left(y+\sqrt{y^{2}+1}\right)
$$

i. Let $x=\sinh ^{-1}(y)$. Show that

$$
\exp (x)-2 y-\exp (-x)=0
$$

Deduce that

$$
\exp (x)^{2}-2 y \exp (x)-1=0
$$

ii. Use the quadratic formula to show that

$$
\exp (x)=y \pm \sqrt{y^{2}+1}
$$

iii. Show that $\exp (x)=y+\sqrt{y^{2}+1}$. $\left(\right.$ Hint: $\exp (x)>0$ always. Now, consider $\left.y-\sqrt{y^{2}+1}\right)$ iv. Deduce that

$$
\sinh ^{-1}(y)=\log \left(y+\sqrt{y^{2}+1}\right)
$$

## Challenging Problems

C1. (*) In this problem you will show that Euler's number

$$
e=\exp (1)=1+\sum_{n=1}^{\infty} \frac{1}{n!}=1+1+\frac{1}{2!}+\frac{1}{3!}+\ldots=2.71828 \ldots
$$

is irrational using a proof by contradiction argument. We will assume that $e$ is, in fact, a rational number (i.e. a ratio of two integers) and derive a statement of absurdity. Hence, it must be the case that $e$ is irrational (any real number must be either rational or irrational).
Assume that $e$ is rational. This means that there are two natural numbers $p$ and $q$ so that

$$
e=\frac{p}{q}
$$

We will assume that $p, q$ satisfy the condition that $p$ is not a multiple of $q$.
(a) Explain why $q \neq 1$. Deduce that $q>1$. (Hint: what would have to be true of e if $q=1$ ?)
(b) Let $s_{m}$ be the $m^{t h}$ partial sum of the series $1+\sum_{n=1}^{\infty} \frac{1}{n!}$. Show that $q!s_{q}$ is an integer. Deduce that

$$
q!\left(e-s_{q}\right)
$$

is an integer.
We will now show, by a different argument, that $q!\left(e-s_{q}\right)$ is not an integer. This contradiction of what we've just shown implies that our assumption that $e$ is rational must be a false assumption. Hence, $e$ can't possibly be rational, so it must be an irrational number.
Observe that, in the argument that follows, we never make use of our assumption that $e=p / q$.
(c) Using the definition of $e$ as the limit of a series, show that

$$
e-s_{q}=\sum_{n=q+1}^{\infty} \frac{1}{n!}=\frac{1}{(q+1)!}+\frac{1}{(q+2)!}+\ldots
$$

(d) Deduce that

$$
q!\left(e-s_{q}\right)=\frac{1}{(q+1)}+\frac{1}{(q+1)(q+2)}+\frac{1}{(q+1)(q+2)(q+3)}+\ldots
$$

(e) Let

$$
a_{n}=\frac{1}{(q+1)(q+2) \cdots(q+n)} .
$$

Show that

$$
a_{n} \leq \frac{1}{(q+1)^{n}}, \quad n=1,2,3, \ldots
$$

Deduce that

$$
q!\left(e-s_{q}\right) \leq \sum_{n=1}^{\infty} \frac{1}{(q+1)^{n}}=\frac{1}{q}<1 .
$$

(f) Recall from Problem A1 that $e>s_{q}$. Show that

$$
0<q!\left(e-s_{q}\right)<1 .
$$

Conclude that $q!\left(e-s_{q}\right)$ can't possibly be an integer.
C2. (***)

