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Problems for submission

A1. In this problem you will show exp(x) grows faster than xm, for any natural number m.

(a) Let m be a natural number. Show that

exp(x) ≥ sm(x), for all x ≥ 0.

Here sm(x) is the mth partial sum of the series 1 + ∑
∞
n=1

xn

n! . (Hint: exp(x) is the limit of the
increasing sequence (sm(x)).)

(b) Let m be a natural number. By considering sm+1(x)
xm , show that

exp(x)

xm
≥

x

(m + 1)!
, for all x ≥ 0.

(c) Explain why
exp(x)

xm

is unbounded as x→∞. Deduce that exp(x) grows faster than xm, for any m.

A2. (a) Let f(x) = 1 +
√

2 + 3x.

i. Determine the domain A of f(x).

ii. Determine the range B of f(x).

iii. Explain why f(x) is one-to-one.

iv. Determine the inverse function f−1(y), taking care to describe its domain and range.

(b) Let n be a natural number. Consider the function

gn(x) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

x, if x ≠ 1,2,3, . . . , n,

x + 1, if x = 1,2, . . . , n − 1,

1, if x = n.

i. Draw the graph of g5(x). What is its domain and range?

ii. Show that g5(x) is one-to-one. Determine the inverse function g−15 (y).
iii. Show that gn(x) is one-to-one. Determine the inverse function g−1n (y).

A3. In this problem you will determine the standard logarithm rules using the definition of log(x) as an
antiderivative of 1/t.

Recall that log(x) = exp−1(x), the inverse function of exp(x), was determined (October 12 Lecture)
to be the function

log(x)
def
= ∫

x

1

dt

t

(a) Let c > 0 be a real number. Define f(x) = log(xc). Using the Fundamental Theorem of Calculus
and the chain rule, show that

f ′(x) =
1

x
.



(b) Deduce that there is some constant K such that f(x) = log(x) +K. (Hint: if g(x) and h(x) are
two functions such that g′(x) = h′(x) then g(x) = h(x) +K, for some constant K)

(c) Show that K = log(c). (Hint: consider f(1)). Deduce that

log(xc) = log(x) + log(c) (∗)

for any x, c > 0.

(d) Let x > 0. By considering the fact that 1 = x ⋅ x−1, use (∗) to show that

log(x−1) = − log(x).

(e) Let x > 0. Using induction show that

log(xn) = n log(x), n = 1,2,3, . . .

Deduce that
log(xn) = n log(x)

for any integer n (not necessarily positive).

A4. Show that
log(x) < x − 1, for any x > 0.

Deduce that log(x) < xk, for any natural number k and any x > 2.

Additional recommended problems (not for submission)

B1. Let f(x) = 1−√x

1+√x
.

(a) Show that f(x) = 2
1+√x

− 1.

(b) Determine the domain A of f(x).

(c) Show that the range B of f(x) is the collection of all real numbers −1 < y ≤ 1.

(d) Explain why f(x) is strictly decreasing. Deduce that f(x) is one-to-one.

(e) Determine the inverse function f−1(y).

B2. (a) Verify the following identities

a4 − b4 = (a − b)(a3 + a2b + ab2 + b3),

a5 − b5 = (a − b)(a4 + a3b + a2b2 + ab3 + b4)

(b) Let a, b be real numbers. Using induction show that

an − bn = (a − b)(an−1 + an−2b + an−3b2 + . . . + a2bn−3 + abn−2 + bn−1), n = 2,3,4, . . .

Hint: n = 2 is the base case. For the inductive step consider

an+1 − bn+1 = an+1 − abn + abn − bn+1

B3. Define

sinh(x) =
1

2
(exp(x) − exp(−x)) , and cosh(x) =

1

2
(exp(x) + exp(−x))

. We call sinh(x) (pronounced sinch of x) the hyperbolic sine function and cosh(x) the hyperbolic
cosine function.



(a) Show that sinh(−x) = − sinh(x) and cosh(−x) = cosh(x).

(b) Show that cosh2
(x) − sinh2

(x) = 1.

(c) Show that
d

dx
sinh(x) = cosh(x),

d

dx
cosh(x) = sinh(x).

(d) Use the derivative of sinh(x) to explain why it is a strictly increasing function. Deduce that
sinh(x) is one-to-one.

(e) The domain and range of sinh(x) is the collection of all real numbers. Hence, its inverse function
sinh−1(y) also has its domain and range being the collection of all real numbers. You will now
show that

sinh−1(y) = log(y +
√
y2 + 1).

i. Let x = sinh−1(y). Show that

exp(x) − 2y − exp(−x) = 0.

Deduce that
exp(x)2 − 2y exp(x) − 1 = 0.

ii. Use the quadratic formula to show that

exp(x) = y ±
√
y2 + 1

iii. Show that exp(x) = y +
√
y2 + 1. (Hint: exp(x) > 0 always. Now, consider y −

√
y2 + 1)

iv. Deduce that
sinh−1(y) = log(y +

√
y2 + 1)

Challenging Problems

C1. (*) In this problem you will show that Euler’s number

e = exp(1) = 1 +
∞
∑
n=1

1

n!
= 1 + 1 +

1

2!
+

1

3!
+ . . . = 2.71828 . . .

is irrational using a proof by contradiction argument. We will assume that e is, in fact, a rational
number (i.e. a ratio of two integers) and derive a statement of absurdity. Hence, it must be the case
that e is irrational (any real number must be either rational or irrational).

Assume that e is rational. This means that there are two natural numbers p and q so that

e =
p

q

We will assume that p, q satisfy the condition that p is not a multiple of q.

(a) Explain why q ≠ 1. Deduce that q > 1. (Hint: what would have to be true of e if q = 1?)

(b) Let sm be the mth partial sum of the series 1+∑
∞
n=1

1
n! . Show that q!sq is an integer. Deduce that

q!(e − sq)

is an integer.

We will now show, by a different argument, that q!(e−sq) is not an integer. This contradiction of
what we’ve just shown implies that our assumption that e is rational must be a false assumption.
Hence, e can’t possibly be rational, so it must be an irrational number.

Observe that, in the argument that follows, we never make use of our assumption that e = p/q.



(c) Using the definition of e as the limit of a series, show that

e − sq =
∞
∑

n=q+1

1

n!
=

1

(q + 1)!
+

1

(q + 2)!
+ . . .

(d) Deduce that

q! (e − sq) =
1

(q + 1)
+

1

(q + 1)(q + 2)
+

1

(q + 1)(q + 2)(q + 3)
+ . . .

(e) Let

an =
1

(q + 1)(q + 2)⋯(q + n)
.

Show that

an ≤
1

(q + 1)n
, n = 1,2,3, . . .

Deduce that

q!(e − sq) ≤
∞
∑
n=1

1

(q + 1)n
=

1

q
< 1.

(f) Recall from Problem A1 that e > sq. Show that

0 < q!(e − sq) < 1.

Conclude that q!(e − sq) can’t possibly be an integer.

C2. (***)


