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Problems for submission

A1. In this problem you will investigate the ‘real version’ of the Mandelbrot set: you will verify that a
region in the following figure should be black.

The Mandelbrot set is a region of the complex plane described by the convergence properties of a
family of sequences of complex numbers (zn).

Let r > 0 and define the sequence (an)n≥1, where

a1 = 0, an+1 = r + a2n, n = 1,2,3, . . .

(a) Suppose that the sequence (an) is convergent and denote L = limn→∞ an. Show that L = r + L2

and

L = 1

2
(1 ±
√

1 − 4r)

(Hint: recall that liman+1 = liman)

Deduce that 0 < r ≤ 1
4 .

(b) For the remainder of this problem we assume that 0 < r ≤ 1
4 . Use mathematical induction to

show that an ≥ 0, for n = 1,2,3, . . ..

(c) Use mathematical induction to show that an ≤ 1
2 , for n = 1,2,3, . . ..

(d) Use mathematical induction to show that an+1 ≥ an, for n = 1,2,3, . . ..

(e) Explain carefully why (an) is convergent whenever 0 < r ≤ 1
4 .

A2. Use the sum of the first 10 terms to approximate the sum of the convergent series

L =
∞
∑
n=1

n

2n
.

Provide an estimate of the error ∣L − s10∣.

A3. Using the Root Test determine the values of x for which the given series converges and diverges.

a) ∑∞
n=1

(x−3)n
4n b) ∑∞

n=1
xn

(n+1)3 c) ∑∞
n=0

xn

n! d) ∑∞
n=1

(−x)n
n2n



A4. Let (Fn) be the Fibonacci sequence, defined recursively as follows

F1 = F2 = 1, Fn = Fn−1 + Fn−2, n = 3,4,5, . . .

(a) Using induction, show that F3n is an even integer, for every n = 1,2,3, . . . (i.e. every third term
of the Fibonacci sequence is even). Recall that an integer x is even if x = 2y, for some integer y.

(b) Using induction, show that Fn < 2n, for every natural number n.

Additional recommended problems (not for submission)

B1. Prove that n! > 2n, for every natural number n.

B2. (a) Using induction, prove that n2 < 3n, for n = 2,3,4, . . .. (Hint: for the inductive step it might help
to consider the parabola y = 2x2 − 2x − 1)

(b) Deduce that n2 < 3n, for every natural number n.

(c) Prove that n3 ≤ 3n, for every natural number n.

B3. Let a, b be distinct integers. Prove that an − bn is divisible by a − b, for every n = 1,2,3, . . ..

B4. For which k is the series ∞
∑
n=1

(n!)2
(kn)!

convergent?

B5. Determine the mxaimum number of regions in which the plane can be divided by n straight lines, for
every natural number n.

Challenging Problems

C1. (*) Divide the plane into regions using straight lines. Prove that those regions can be coloured with
two colours so that no two regions that share a boundary have the same colour.

C2. (***) In this problem you will prove the Riemann Rearrangement Theorem:

Let ∑an be a conditionally convergent series, r a real number. Then, there is a rearrangement (bn)
of the sequence (an) so that the series ∑ bn converges to r.

Given a series ∑an we define the series ∑pn whose terms (pn) are all the positive terms of the sequence
(an), and a series ∑ qn whose terms (qn) are all the negative terms of the sequence (an). Specifically,

pn =
an + ∣an∣

2
, qn =

an − ∣an∣
2

.

Observe that, if an > 0 then pn = an and qn = 0, and if an < 0 then qn = an and pn = 0.

(a) Suppose that ∑an is absolutely convergent. Show that both of the series ∑pn and ∑ qn are
convergent.

(b) Suppose that ∑an is conditionally convergent. Show that one of the series ∑pn or ∑ qn must be
divergent. Deduce that the corresponding sequence of partial sums is unbounded.

(c) Suppose that ∑an is conditionally convergent. Show that both ∑pn and ∑ qn must have un-
bounded sequences of partial sums.

(d) Let r be a real number.



i. Show that there exists N such that ∑N
n=1 pn > r. Define N1 to be the least natural number

such that

S1
def=

N1

∑
n=1

pn > r.

ii. Show that there exists M such that ∑N1
n=1 pn +∑M

n=1 qn < r. Define M1 to be the least natural
number such that

T1
def=

N1

∑
n=1

pn +
M1

∑
n=1

qn < r.

iii. Similarly, let N2 > N1 be the least natural number such that

S2
def=

N2

∑
n=1

pn +
M1

∑
n=1

qn > r.

Explain why N2 exists.

iv. Similarly, let M2 >M1 be the least natural number such that

T2
def=

N2

∑
n=1

pn +
M2

∑
n=1

qn < r.

Explain why M2 exists.

v. Continuing in this way, show that you can obtain an increasing sequence of integers

N1 < N2 < N3 < ⋯ M1 <M2 <M3 < ⋯

and sums

Sk
def=

Nk

∑
n=1

pn +
Mk−1

∑
n=1

qn, and Tk
def=

Nk

∑
n=1

pn +
Mk

∑
n=1

qn

satisfying
0 < Sk − r < pMk

, and 0 < r − Tk < −qMk
.

vi. Explain why the rearrangement

(bn) = (p1, . . . , pN1 , q1, . . . , qM1 , pN1+1, . . . , pN2 , qM1+1, . . . , qM2 , . . .),

satisfies ∑ bn = r. Deduce Riemann’s Rearrangement Theorem.


