Keywords: root \& ratio test, mathematical induction, estimation.

Problems for submission

A1. In this problem you will investigate the 'real version' of the Mandelbrot set: you will verify that a region in the following figure should be black.

The Mandelbrot set is a region of the complex plane described by the convergence properties of a family of sequences of complex numbers $\left(z_{n}\right)$.

Let $r>0$ and define the sequence $\left(a_{n}\right)_{n \geq 1}$, where

$$
a_{1}=0, \quad a_{n+1}=r+a_{n}^{2}, \quad n=1,2,3, \ldots
$$

(a) Suppose that the sequence $\left(a_{n}\right)$ is convergent and denote $L=\lim _{n \rightarrow \infty} a_{n}$. Show that $L=r+L^{2}$ and

$$
L=\frac{1}{2}(1 \pm \sqrt{1-4 r})
$$

(Hint: recall that $\lim a_{n+1}=\lim a_{n}$)
Deduce that $0<r \leq \frac{1}{4}$.
(b) For the remainder of this problem we assume that $0<r \leq \frac{1}{4}$. Use mathematical induction to show that $a_{n} \geq 0$, for $n=1,2,3, \ldots$.
(c) Use mathematical induction to show that $a_{n} \leq \frac{1}{2}$, for $n=1,2,3, \ldots$.
(d) Use mathematical induction to show that $a_{n+1} \geq a_{n}$, for $n=1,2,3, \ldots$.
(e) Explain carefully why $\left(a_{n}\right)$ is convergent whenever $0<r \leq \frac{1}{4}$.

A2. Use the sum of the first 10 terms to approximate the sum of the convergent series

$$
L=\sum_{n=1}^{\infty} \frac{n}{2^{n}} .
$$

Provide an estimate of the error $\left|L-s_{10}\right|$.
A3. Using the Root Test determine the values of x for which the given series converges and diverges.
a) $\sum_{n=1}^{\infty} \frac{(x-3)^{n}}{4^{n}}$
b) $\sum_{n=1}^{\infty} \frac{x^{n}}{(n+1)^{3}}$
c) $\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$
d) $\sum_{n=1}^{\infty} \frac{(-x)^{n}}{n 2^{n}}$

A4. Let $\left(F_{n}\right)$ be the Fibonacci sequence, defined recursively as follows

$$
F_{1}=F_{2}=1, \quad F_{n}=F_{n-1}+F_{n-2}, \quad n=3,4,5, \ldots
$$

(a) Using induction, show that $F_{3 n}$ is an even integer, for every $n=1,2,3, \ldots$ (i.e. every third term of the Fibonacci sequence is even). Recall that an integer x is even if $x=2 y$, for some integer y.
(b) Using induction, show that $F_{n}<2^{n}$, for every natural number n.

Additional recommended problems (not for submission)

B1. Prove that $n!>2^{n}$, for every natural number n.
B2. (a) Using induction, prove that $n^{2}<3^{n}$, for $n=2,3,4, \ldots$ (Hint: for the inductive step it might help to consider the parabola $y=2 x^{2}-2 x-1$)
(b) Deduce that $n^{2}<3^{n}$, for every natural number n.
(c) Prove that $n^{3} \leq 3^{n}$, for every natural number n.

B3. Let a, b be distinct integers. Prove that $a^{n}-b^{n}$ is divisible by $a-b$, for every $n=1,2,3, \ldots$.
B4. For which k is the series

$$
\sum_{n=1}^{\infty} \frac{(n!)^{2}}{(k n)!}
$$

convergent?
B5. Determine the mxaimum number of regions in which the plane can be divided by n straight lines, for every natural number n.

Challenging Problems

C1. (*) Divide the plane into regions using straight lines. Prove that those regions can be coloured with two colours so that no two regions that share a boundary have the same colour.
$\mathrm{C} 2 .\left({ }^{* * *}\right)$ In this problem you will prove the Riemann Rearrangement Theorem:
Let $\sum a_{n}$ be a conditionally convergent series, r a real number. Then, there is a rearrangement $\left(b_{n}\right)$ of the sequence $\left(a_{n}\right)$ so that the series $\sum b_{n}$ converges to r.
Given a series $\sum a_{n}$ we define the series $\sum p_{n}$ whose terms $\left(p_{n}\right)$ are all the positive terms of the sequence $\left(a_{n}\right)$, and a series $\sum q_{n}$ whose terms $\left(q_{n}\right)$ are all the negative terms of the sequence $\left(a_{n}\right)$. Specifically,

$$
p_{n}=\frac{a_{n}+\left|a_{n}\right|}{2}, \quad q_{n}=\frac{a_{n}-\left|a_{n}\right|}{2} .
$$

Observe that, if $a_{n}>0$ then $p_{n}=a_{n}$ and $q_{n}=0$, and if $a_{n}<0$ then $q_{n}=a_{n}$ and $p_{n}=0$.
(a) Suppose that $\sum a_{n}$ is absolutely convergent. Show that both of the series $\sum p_{n}$ and $\sum q_{n}$ are convergent.
(b) Suppose that $\sum a_{n}$ is conditionally convergent. Show that one of the series $\sum p_{n}$ or $\sum q_{n}$ must be divergent. Deduce that the corresponding sequence of partial sums is unbounded.
(c) Suppose that $\sum a_{n}$ is conditionally convergent. Show that both $\sum p_{n}$ and $\sum q_{n}$ must have unbounded sequences of partial sums.
(d) Let r be a real number.
i. Show that there exists N such that $\sum_{n=1}^{N} p_{n}>r$. Define N_{1} to be the least natural number such that

$$
S_{1} \stackrel{\text { def }}{=} \sum_{n=1}^{N_{1}} p_{n}>r .
$$

ii. Show that there exists M such that $\sum_{n=1}^{N_{1}} p_{n}+\sum_{n=1}^{M} q_{n}<r$. Define M_{1} to be the least natural number such that

$$
T_{1} \stackrel{\text { def }}{=} \sum_{n=1}^{N_{1}} p_{n}+\sum_{n=1}^{M_{1}} q_{n}<r .
$$

iii. Similarly, let $N_{2}>N_{1}$ be the least natural number such that

$$
S_{2} \stackrel{\text { def }}{=} \sum_{n=1}^{N_{2}} p_{n}+\sum_{n=1}^{M_{1}} q_{n}>r .
$$

Explain why N_{2} exists.
iv. Similarly, let $M_{2}>M_{1}$ be the least natural number such that

$$
T_{2} \stackrel{\text { def }}{=} \sum_{n=1}^{N_{2}} p_{n}+\sum_{n=1}^{M_{2}} q_{n}<r .
$$

Explain why M_{2} exists.
v. Continuing in this way, show that you can obtain an increasing sequence of integers

$$
N_{1}<N_{2}<N_{3}<\cdots \quad M_{1}<M_{2}<M_{3}<\cdots
$$

and sums

$$
S_{k} \stackrel{\text { def }}{=} \sum_{n=1}^{N_{k}} p_{n}+\sum_{n=1}^{M_{k-1}} q_{n}, \quad \text { and } \quad T_{k} \stackrel{\text { def }}{=} \sum_{n=1}^{N_{k}} p_{n}+\sum_{n=1}^{M_{k}} q_{n}
$$

satisfying

$$
0<S_{k}-r<p_{M_{k}}, \quad \text { and } \quad 0<r-T_{k}<-q_{M_{k}} .
$$

vi. Explain why the rearrangement

$$
\left(b_{n}\right)=\left(p_{1}, \ldots, p_{N_{1}}, q_{1}, \ldots, q_{M_{1}}, p_{N_{1}+1}, \ldots, p_{N_{2}}, q_{M_{1}+1}, \ldots, q_{M_{2}}, \ldots\right)
$$

satisfies $\sum b_{n}=r$. Deduce Riemann's Rearrangement Theorem.

