

Calculus II: Fall 2017 Problem Set 1 Solutions Contact: gmelvin@middlebury.edu

Problems for submission

- A1. Consider the sequence (a_n) , where $a_n = \frac{1}{n^3+10}$. In this problem you will show that (a_n) is convergent with limit L = 0 using the Squeeze Theorem.
 - (a) Carefully explain why the sequence (b_n) , where $b_n = 0$, is convergent with limit L = 0.
 - (b) Carefully explain why the sequence (c_n) , where $c_n = \frac{1}{n^3}$, is convergent with limit L = 0.
 - (c) Using the Squeeze Theorem, carefully explain why (a_n) is convergent with limit L = 0.

Solution:

(a) Let L = 0. Since $b_n = 0$, for every n we find that, given any $\varepsilon > 0$,

 $n \ge 1 \implies |b_n - 0| = |0| = 0 < \varepsilon.$

This shows that (b_n) is convergent with limit L = 0.

(b) Let $c_n = \frac{1}{n^3}$. Using the Limit Laws for Sequences we have

$$\lim_{n \to \infty} c_n = \left(\lim_{n \to \infty} \frac{1}{n}\right)^3 = 0^3 = 0,$$

where we have used that $\lim_{n\to\infty} = 0$.

(c) First, we observe that $a_n > 0$, for each $n = 1, 2, 3, \ldots$ Also, for each $n = 1, 2, 3, \ldots$,

$$n^3 + 10 > n^3 \implies \frac{1}{n^3 + 10} < \frac{1}{n^3}$$

Hence, by the Squeeze Theorem, we conclude that $\lim_{n\to\infty} a_n = 0$.

A2. We introduce the following definitions:

- a sequence (a_n) is **bounded above** if there exists M such that $a_n \leq M$, for every $n \geq 1$. We call M an **upper bound** of (a_n) .
- a sequence (a_n) is **bounded below** if there exists m such that $a_n \ge m$, for every $n \ge 1$. We call m a **lower bound** of (a_n) .
- a sequence (a_n) is alternating if $a_n a_{n+1} < 0$, for every $n \ge 1$; that is, any two consecutive terms must have opposite sign.

For each of the following sequences $(a_n)^1$, determine which of the properties hold. You do not have to provide justification.

- (i) bounded above, bounded below. If bounded above (resp. below) provide an explicit upper (resp. lower) bound.
- (ii) increasing, decreasing or alternating.
- (iii) convergent, divergent.

¹Given a natural number *n*, define *n*! (*n* factorial) to be the product $n! \stackrel{def}{=} 1 \cdot 2 \cdot 3 \cdots (n-2) \cdots (n-1) \cdot n$.

a)
$$a_n = \frac{2n^2}{n^2 + 1}$$
 b) $a_n = \frac{2n}{n^2 + 1}$ c) $a_n = \sin(1/n)$ d) $a_n = 4 - \frac{(-1)^n}{n}$ e) $a_n = \frac{n^2 - (-1)^n}{n}$
f) $a_n = \frac{2^n}{(-\pi)^n}$ g) $a_n = \frac{5-2n}{n+5}$ h) $a_n = \frac{\sin(n)}{n}$ i) $a_n = \sqrt{n+1} - \sqrt{n}$ j) $a_n = \frac{(n!)^2}{(2n)!}$.

Solution: We write BA for 'bounded above', BB for 'bounded below', I for 'increasing', D for 'decreasing', A for 'alternating', C for 'convergent', V for 'divergent'.

- a) BA (M = 2), BB (m = 0), I, C b) BA (M = 10), BB (m = 0), D, C c) BA (M = 1), BB (m = 0), D, C d) BA (M = 5), BB (m = 3), C e) BB (m = 0), D f) BA (M = 1), BB (m = -1), A, C g) BA (M = 5), BB (m = -2), C h) BA (M = 1), BB (m = -1), C i) BA (M = 1), BB (m = 0), D, C j) BA (M = 1), BB (m = 0), D, C.
- A3. Consider the sequence (a_n) , where $a_n = \frac{1}{n^2+1}$. In this problem you will show directly that (a_n) is convergent with limit L = 0.
 - (a) Explain why $|a_n| = a_n$, for every natural number n.
 - (b) Determine a natural number N so that, if $n \ge N$ then $|a_n| < 20$.
 - (c) Determine a natural number N so that, if $n \ge N$ then $|a_n| < \frac{1}{10}$.
 - (d) Determine a natural number N so that, if $n \ge N$ then $|a_n| < 2^{-16}$.
 - (e) Let $\varepsilon > 0$. Determine a natural number N so that, if $n \ge N$ then $|a_n| < \varepsilon$. (*Hint: the natural number N will depend on* ε .)

Solution:

- (a) Since $\frac{1}{n^2+1} > 0$, for every n = 1, 2, 3, ..., we have $|a_n| = a_n$.
- (b) We have

$$|a_n| < 20 \quad \Leftrightarrow \quad \frac{1}{n^2 + 1} < 20 \quad \Leftrightarrow \quad n^2 > \frac{-19}{20}$$

This last inequality is true for every natural number n. Hence, we can take N = 1. Then, for each natural number $n \ge N = 1$ we have

$$n \ge N = 1 \implies n^2 \ge N^2 = 1 > -\frac{19}{20} \implies |a_n| < 20$$

(c) In a similar way, we see that

$$|a_n| < \frac{1}{10} \quad \Leftrightarrow \quad \frac{1}{n^2 + 1} < \frac{1}{10} \quad \Leftrightarrow \quad n^2 > 9$$

This last inequality is true for every natural number $n \ge 4$. Hence, we can take N = 4. Then, for each natural number $n \ge N = 4$ we have

$$n \ge N = 4 \quad \Longrightarrow \quad n^2 \ge N^2 = 16 > 9 \quad \Longrightarrow \quad |a_n| < \frac{1}{10}.$$

(d) In a similar way, we see that

$$|a_n| < 2^{-16} \quad \Leftrightarrow \quad \frac{1}{n^2 + 1} < 2^{-16} \quad \Leftrightarrow \quad n^2 > 2^{16} - 1 = 65535$$

This last inequality is true for every natural number $n \ge 1000$ (for example). Hence, we can take N = 1000. Then, for each natural number $n \ge N = 1000$ we have

$$n \ge N = 1000 \implies n^2 \ge N^2 = 1,000,000 > 65535 \implies |a_n| < 2^{-16}.$$

(e) Let $\varepsilon > 0$. Then, we see that

$$|a_n| < \varepsilon \quad \Leftrightarrow \quad \frac{1}{n^2 + 1} < \varepsilon \quad \Leftrightarrow \quad n^2 > \frac{1}{\varepsilon} - 1$$

We want to know when this last inequality is true. First we see that, if $\varepsilon \ge 1$ then this last inequality is true for every natural number n (since the right hand side is ≤ 0). Hence, if we take N = 1 whenever $\varepsilon \ge 1$ then

$$n \ge N = 1 \implies n^2 \ge N^2 = 1 > \frac{1}{\varepsilon} - 1 \implies |a_n| < \varepsilon.$$

Suppose that $0 < \varepsilon < 1$: hence, $\frac{1}{\varepsilon} - 1 > 0$. Let N be a natural number satisfying $N > \sqrt{\frac{1}{\varepsilon} - 1}$. Then,

$$n \ge N > \sqrt{\frac{1}{\varepsilon} - 1} \implies n^2 \ge N^2 > \frac{1}{\varepsilon} - 1 \implies |a_n| < \varepsilon.$$

A4. Consider the series $\sum_{n=1}^{\infty} (-1)^n$.

- (a) Write down the first five partial sums s_1, s_2, s_3, s_4, s_5 . What is a general expression for s_n ?
- (b) Is the series $\sum_{n=1}^{\infty} (-1)^n$ convergent or divergent? Explain your answer carefully.

Solution:

(a)

$$s_1 = -1, \quad s_2 = (-1) + 1 = 0, \quad s_3 = (-1) + 1 + (-1) = -1,$$

 $s_4 = (-1) + 1 + (-1) + 1 = 0, \quad s_5 = (-1) + 1 + (-1) + 1 + (-1) = -1.$

The general expression is

$$s_n = \begin{cases} -1, & \text{when } n \text{ odd,} \\ 0, & \text{when } n \text{ even.} \end{cases}$$

(b) This series is divergent: the sequences of partial sums does not converge to any fixed limit L.

A5. For each of the following series determine whether the series converges or diverges; make sure you justify your conclusion. If the series converges determine its limit.

a) $\sum_{n=1}^{\infty} \frac{1}{5^n}$ b) $\sum_{n=1}^{\infty} 3\left(\frac{-1}{4}\right)^{n-1}$ c) $\sum_{n=0}^{\infty} \frac{5}{10^{3n}}$ d) $\sum_{n=5}^{\infty} \frac{1}{(2+\pi)^{2n}}$ e) $\sum_{n=2}^{\infty} \frac{(-5)^n}{8^{2n}}$ f) $\sum_{n=1}^{\infty} \frac{3+2^n}{2^{n+2}}$ g) $\sum_{n=1}^{\infty} \frac{3+2^n}{3^{n+2}}$ h) $\sum_{n=1}^{\infty} \frac{1}{n(n+2)}$ i) $\sum_{n=1}^{\infty} \frac{1}{(2n-1)(2n+1)}$ j) $\sum_{n=1}^{\infty} \frac{n}{2n+1}$

Solution:

- (a) Geometric series; converges to 1/4.
- (b) Geometric series; converges to -3/5.
- (c) Geometric series; converges to 5000/999.
- (d) Geometric series; converges to $1/(2 + \pi)^8((2 + \pi)^2 1)$.
- (e) Geometric series; converges to 64/345.
- (f) Divergent; the series can be split into a sum of two series $\sum_{n=1} \frac{3}{2^{n+2}} + \sum_{n=1}^{\infty} \frac{1}{4}$. The latter series does not converge: its terms do not converge to 0 as $n \to \infty$.

- (g) Sum of two geometric series; converges to 7/18.
- (h) This is a telescoping series: we can write

$$\frac{1}{n(n+2)} = \frac{1}{2} \left(\frac{1}{n} - \frac{1}{n+2} \right)$$

Then, the n^{th} partial sum is

$$s_n = \frac{1}{2} \left(1 + \frac{1}{2} + \ldots + \frac{1}{n-1} + \frac{1}{n} - \frac{1}{3} - \frac{1}{4} - \cdots - \frac{1}{n} - \frac{1}{n+1} - \frac{1}{n+2} \right) = \frac{1}{2} \left(\frac{3}{2} - \frac{1}{n+1} - \frac{1}{n+2} \right)$$

The sequence (s_n) converges to 3/4. Hence, the series is convergent with limit 3/4.

(i) Observe that

$$\frac{1}{(2n-1)(2n+1)} = \frac{1}{2} \left(\frac{1}{2n-1} - \frac{1}{2n+1} \right)$$

Thus, the n^{th} partial sum is

$$s_n = \frac{1}{2} \left(1 + \frac{1}{3} + \frac{1}{5} + \dots + \frac{1}{2n-1} - \frac{1}{3} - \frac{1}{5} - \dots - \frac{1}{2n-1} - \frac{1}{2n+1} \right) = \frac{1}{2} \left(1 - \frac{1}{2n+1} \right)$$

The sequence (s_n) converges to 1/2. Hence, the series is convergent with limit 1/2

(j) Divergent; the sequence of terms $\left(\frac{n}{2n+1}\right)_{n\geq 1}$ of the series do not converge to 0.

Additional recommended problems (not for submission)

- B1. Let f(x) be a differentiable function, defined for all $1 \le x < \infty$ (and possibly on a larger domain). Consider the sequence $(a_n)_{n\ge 1}$, where $a_n = f(n)$.
 - (a) Suppose that $f'(x) \ge 0$, for all $1 \le x < \infty$. Is the sequence (a_n) increasing, decreasing or neither?
 - (b) Suppose that $f'(x) \leq 0$, for all $1 \leq x < \infty$. Is the sequence (a_n) increasing, decreasing or neither?
 - (c) Consider the sequence (a_n) , where $a_n = \cos\left(\frac{\pi}{n}\right)$. In this problem you will use your results above to show that (a_n) is a convergent sequence.
 - i. Let $f(x) = \cos\left(\frac{\pi}{x}\right)$. Show that $f'(x) = \frac{\pi \sin(\pi/x)}{x^2}$. (*Hint: chain rule!*)
 - ii. Explain why $\sin(\pi/x) \ge 0$ whenever $x \ge 1$.
 - iii. Explain carefully why (a_n) is an increasing sequence.
 - iv. Show that (a_n) is a bounded sequence and deduce that (a_n) is a convergent sequence.
 - v. What do you think the limit of the sequence (a_n) is? Justify your answer.

Solution:

- (a) Since $f'(x) \ge 0$, the function f(x) is increasing. Hence, the sequence (a_n) is also increasing.
- (b) Since $f'(x) \leq 0$, the function f(x) is decreasing. Hence, the sequence (a_n) is also decreasing.
- (c) i. Using the chaine rule, we have

$$f'(x) = \left(-\sin\left(\frac{\pi}{x}\right)\right) \cdot \left(-\frac{\pi}{x^2}\right)$$
$$= \frac{\pi \sin(\pi/x)}{x^2}.$$

- ii. If $x \ge 1$ then $0 < \pi/x \le \pi$. Hence, $\sin(\pi/x) \ge 0$.
- iii. Since $f'(x) \ge 0$ whenever $x \ge 1$ (using the previous problem), we can deduce that a_n is an increasing sequence, by (a).
- iv. Since $-1 \leq f(x) \leq 1$, for all x, we conclude that $-1 \leq a_n \leq 1$, for each n. Hence, (a_n) is an increasing, bounded sequence and therefore convergent, by M+B Theorem.
- v. As $n \to \infty$, the quantity $\pi/n \to 0$. Hence, we expect that $\cos(\pi/n) \to \cos(0) = 1$: this is justified because $\cos(x)$ is a continuous function.
- B2. Let (a_n) be a sequence satisfying $a_n > 0$, for every $n = 1, 2, 3, \ldots$ Complete the following statements:
 - (a) (a_n) is increasing is equivalent to $\frac{a_{n+1}}{a_n} \ge \underline{1}$, for every $n = 1, 2, 3, \ldots$
 - (b) (a_n) is decreasing is equivalent to $\frac{a_{n+1}}{a_n} \leq \underline{1}$, for every $n = 1, 2, 3, \ldots$
- B3. Let (a_n) be a sequence.
 - We say that (a_n) diverges to $+\infty$ if, for every real number K there exists a natural number N such that

$$n \ge N \implies a_n > K.$$

We write, by abuse of notation, $\lim_{n\to\infty} a_n = +\infty$.

• We say that (a_n) diverges to $-\infty$ if, for every real number K there exists a natural number N such that

$$n \ge N \implies a_n < K.$$

We write, by abuse of notation, $\lim_{n\to\infty} a_n = -\infty$.

(a) Determine whether the given sequence (a_n) diverges to $+\infty, -\infty$, neither.

a)
$$a_n = n$$
 b) $a_n = (-1)^n n$ c) $a_n = 2n + (-1)^n$ d) $\frac{n^2 - 4}{n+5}$ e) $a_n = \frac{(2n)!}{2(n!)}$

- (b) Let c be a real number. Give an example of sequences (a_n) , (b_n) such that $\lim_{n\to\infty} a_n = +\infty$, $\lim_{n\to\infty} b_n = -\infty$ and $\lim_{n\to\infty} (a_n + b_n) = c$.
- (c) Suppose that (a_n) is a sequence that diverges to $+\infty$.
 - i. Let (b_n) be a sequence such that $b_n \ge a_n$, for each n = 1, 2, 3, ... Does (b_n) diverge to $+\infty$, $-\infty$, neither $\pm\infty$, or is there not enough information to decide?
 - ii. Let (b_n) be a sequence such that $b_n \leq a_n$, for each $n = 1, 2, 3, \ldots$ Does (b_n) diverge to $+\infty$, $-\infty$, neither $\pm\infty$, or is there not enough information to decide?
 - iii. Let (b_n) be a sequence such that $b_{2n} \ge a_{2n}$, for each n = 1, 2, 3, ... Does (b_n) diverge to $+\infty$, $-\infty$, neither $\pm\infty$, or is there not enough information to decide?

Solution:

- (a) a) $+\infty$: given K, let N be a natural number satisfying N > K. Then, for any $n \ge N$ we have $a_n = n \ge N > K$.
 - b) neither: the sequence oscillates between positive and negative terms.
 - c) Write down the first few terms of the sequence: $1, 5, 5, 9, 9, 13, 13, \ldots$ We see that a_n diverges to $+\infty$.
 - d) As n gets very large the terms a_n will 'look like' $\frac{n^2}{n} = n$. Hence, we expect that for n very large the sequence behaves like the sequence $b_n = n$: so, (a_n) diverges to $+\infty$. Let's show this: we use the following trick

$$a_n \frac{n^2 - 4}{n+5} = \frac{n^2 - 25 + 25 - 4}{n+5} = \frac{(n-5)(n+5) + 21}{n+5} = n - 5 + \frac{21}{n+5}$$

Hence, for each n = 1, 2, 3, ..., we have $a_n \ge n-5$ because $\frac{21}{n+5} \ge 0$. So, given a real number K, take a natural number N such that N-5 > K. Then,

$$n \ge N \implies a_n \ge n - 5 \ge N - 5 > K.$$

e) We see that

$$\frac{(2n)!}{2(n!)} = \frac{2n(2n-1)\cdots(n+1)n(n-1)\cdots2.1}{2.n(n-1)\cdots2.1} = \frac{2n(2n-1)\cdots(n+1)}{2}$$

For each $n = 1, 2, 3, \ldots, \frac{n+1}{2} \ge 1$, so we see that

$$a_n = \frac{(2n)!}{2(n!)} \ge 2n(2n-1)\cdots(n+2) \ge n+2$$

Hence, as n gets very large, the terms a_n get pushed to $+\infty$: this means that (a_n) diverges to $+\infty$.

To show this, suppose given a real number K. Then, take N a natural number such that N+2 > K. Hence,

 $n \ge N \implies a_n \ge n+2 \ge N+2 > K.$

We have shown that (a_n) diverges to $+\infty$.

- (b) Take $a_n = n$, $b_n = -n$ and c = 0. Then, (a_n) diverges to $+\infty$, (b_n) diverges to $-\infty$ and $(a_n + b_n)$ is the constant sequence (0) (i.e. all the terms are 0).
- (c) i. (b_n) diverges to $+\infty$
 - ii. there is not enough information to decide
 - iii. there is not enough information to decide

B4. Consider the sequence (a_n) , where

$$a_n = \frac{\alpha_r n^r + \alpha_{r-1} n^{r-1} + \ldots + \alpha_1 n + \alpha_0}{\beta_s n^s + \beta_{s-1} n^{s-1} + \ldots + \beta_1 n + \beta_0}.$$

Here $\alpha_0, \ldots, \alpha_r, \beta_0, \ldots, \beta_s$ are constants, $\alpha_r, \beta_s \neq 0$.

(a) Let r < s. Use the Limit Laws for Sequences to show that (a_n) is convergent with limit L = 0.

(b) Let r = s. Use the Limit Laws for Sequences to show that (a_n) is convergent with limit $L = \frac{\alpha_r}{\beta_s}$.

Solution: We have

$$a_{n} = \frac{\alpha_{r}n^{r} + \alpha_{r-1}n^{r-1} + \ldots + \alpha_{1}n + \alpha_{0}}{\beta_{s}n^{s} + \beta_{s-1}n^{s-1} + \ldots + \beta_{1}n + \beta_{0}} = \frac{n^{r}}{n^{s}} \left(\frac{\alpha_{r} + \alpha_{r-1}/n + \ldots + \alpha_{1}/n^{r-1} + \alpha_{0}/n^{r}}{\beta_{s} + \beta_{s-1}/n^{s} + \ldots + \beta_{1}/n^{s-1} + \beta_{0}/n^{s}} \right)$$
$$= n^{r-s} \left(\frac{\alpha_{r} + \alpha_{r-1}/n + \ldots + \alpha_{1}/n^{r-1} + \alpha_{0}/n^{r}}{\beta_{s} + \beta_{s-1}/n^{s} + \ldots + \beta_{1}/n^{s-1} + \beta_{0}/n^{s}} \right)$$

(a) If r < s then r - s < 0 and $\lim n^{r-s} = 0$. Hence,

$$\lim a_n = (\lim n^{r-s}) \cdot \frac{\alpha_r}{\beta_s} = 0$$

- (b) Similarly, if r = s then $\lim n^{r-s} = 1$ and $\lim a_n = \frac{\alpha_r}{\beta_s}$.
- B5. (For students who have seen mathematical induction) In this problem you will determine an approach to approximating the real number $\sqrt{2}$. Let $a_1 = 1$, and define $a_{n+1} = \sqrt{1 + 2a_n}$, for $n = 1, 2, 3, \ldots$

- (a) Write down the first five terms a_1, a_2, a_3, a_4, a_5 .
- (b) Show that the sequence (a_n) is increasing. (*Hint: use induction*)
- (c) Show that the sequence (a_n) is bounded above by 3. (*Hint: use induction*)
- (d) Deduce that (a_n) is convergent. Let $L = \lim_{n \to \infty} a_n$ denote the (yet to be determined) limit of (a_n) .
- (e) Consider the sequence (b_n) , where $b_n = \sqrt{1 + 2a_n}$. Explain carefully why $\lim_{n\to\infty} b_n = \lim_{n\to\infty} a_n$. Deduce that $L = 1 + \sqrt{2}$.
- (f) Use the previous problem to describe an approach to determine an approximation of the real number $\sqrt{2}$ to within 10 decimal places.

Solution:

(a)
$$a_1 = 1, a_2 = \sqrt{3}, a_3 = \sqrt{1 + 2\sqrt{3}}, a_4 = \sqrt{1 + 2\sqrt{1 + 2\sqrt{3}}}, a_5 = \sqrt{1 + 2\sqrt{1 + 2\sqrt{3}}}.$$

(b) Proceed by mathematical induction. We have $a_2 > a_1$, by inspection. Assume $a_k > a_{k-1}$. We will show that this implies $a_{k+1} > a_k$. Indeed, we have

$$a_{k+1} = \sqrt{1 + 2a_k} > \sqrt{1 + 2a_{k-1}} = a_k$$

Hence, $a_{n+1} > a_n$, for all *n* by induction.

(c) We proceed by mathematical induction. We have $a_1 = 1 < 3$. Assume that $a_k < 3$. We will show that this implies that $a_{k+1} < 3$. Indeed, we have

$$a_{k+1} = \sqrt{1+2a_k} < \sqrt{1+2.3} = \sqrt{7} < 3.$$

- (d) The sequence (a_n) is increasing and bounded. Hence, by the M+B Theorem, (a_n) is convergent. Let $L = \lim_{n \to \infty} a_n$.
- (e) Since $b_n = a_{n+1}$, we have $\lim_{n\to\infty} b_n = \lim_{n\to\infty} a_{n+1}$. Hence, (b_n) is convergent also. Thus,

$$L = \lim_{n \to \infty} a_{n+1} = \lim_{n \to \infty} \sqrt{1 + 2a_n} = \sqrt{1 + 2\lim_{n \to \infty}} = \sqrt{1 + 2L}.$$

Hence,

$$L^2 = 1 + 2L \implies L^2 - 2L - 1 = 0$$

L must be a root of the equation $x^2 - 2x - 1 = 0$. Using the quadratic formula we know that the roots are

 $1 \pm \sqrt{2}$.

Since $1 - \sqrt{2} < 0$, and the sequence (a_n) was increasing (hence, $a_n \ge a_1 = 1$), we must have that $L = 1 + \sqrt{2}$.

(f) Since $\lim_{n\to\infty} a_n = 1 + \sqrt{2}$, we could

B6. Is the following sequence convergent? If yes, determine its limit; if no, explain why not.

$$\sqrt{2}, \sqrt{2\sqrt{2}}, \sqrt{2\sqrt{2\sqrt{2}}}, \dots$$

(a) The sequence is convergent. We proceed as in the previous exercise. First, note that

$$a_1 = \sqrt{2}, \quad a_{n+1} = \sqrt{2a_n}, \quad n = 1, 2, 3, \dots$$

 (a_n) is increasing: proceed by induction, as above. We have $a_2 - a_1 > 0$ by inspection. Suppose that $a_k > a_{k-1}$. We will show that $a_{k+1} > a_k$. Indeed, we have

$$a_{k+1} = \sqrt{2a_k} > \sqrt{2a_{k-1}} = a_k.$$

Hence, (a_k) is increasing, by induction.

 (a_n) is bounded: we claim that $a_n < 3$, for all n. First, we have $a_1 = \sqrt{2} < 3$. Assume that $a_k < 3$. We will show that $a_{k+1} < 3$. Indeed,

$$a_{k+1} = \sqrt{2a_k} < \sqrt{2.3} = \sqrt{6} < 3.$$

Hence, $a_n < 3$, for all n by induction.

Thus, (a_n) is an increasing, bounded sequence, therefore it is convergent. Let $L = \lim a_n$. Hence, we have

$$L = \lim a_{n+1} = \lim \sqrt{2a_n} = \sqrt{2\lim a_n} = \sqrt{2L}.$$

Hence, $L^2 = 2L$. As (a_n) is increasing, so $a_n \ge a_1 = \sqrt{2}$ we must have that L = 2. Hence, (a_n) is convergent with limit 2.

B7. Let (a_n) be a sequence.

- We say that (a_n) is **eventually increasing** if there is some natural number E such that the sequence $(a_n)_{n\geq E}$ is increasing.
- We say that (a_n) is eventually decreasing if there is some natural number F such that the sequence $(a_n)_{n\geq F}$ is decreasing.

Suppose that (a_n) is eventually increasing/eventually decreasing and bounded. Show that (a_n) is convergent.

- B8. In this problem you will show that the series $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converges.
 - (a) Consider the series $\sum_{n=2}^{\infty} \frac{1}{n(n-1)}$ and denote its partial sums s_1, s_2, s_3, \ldots
 - i. Write down the partial sums s_2, s_3, s_4, s_5, s_6 .
 - ii. Show that $\sum_{n=2}^{m} \frac{1}{n(n-1)} = 1 \frac{1}{m}$, for m = 2, 3, 4, ...
 - iii. Conclude that $\sum_{n=2}^{\infty} \frac{1}{n(n-1)}$ converges and determine its limit.
 - (b) Consider the series $\sum_{n=1}^{\infty} \frac{1}{n^2}$ and denote its partial sums t_1, t_2, t_3, \ldots Show that $t_n \leq 1 + s_n$, for $n = 2, 3, 4, \ldots$ and deduce that $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converges. (*Hint: show that the sequence* $(t_m)_{m\geq 1}$ *is increasing*)

Solution:

(a) i.
$$s_2 = \frac{1}{2}s_3 = \frac{2}{3}, s_4 = \frac{3}{4}, s_5 = \frac{4}{5}, s_6 = \frac{5}{6}.$$

ii. We have $\frac{1}{n(n-1)} = \frac{1}{n-1} - \frac{1}{n}.$

Hence,

$$s_m = \sum_{n=2}^m \frac{1}{n(n-1)} = \sum_{n=2}^m \frac{1}{n-1} - \frac{1}{n} = \left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{m-1}\right) - \left(\frac{1}{2} + \dots + \frac{1}{m}\right) = 1 - \frac{1}{m}$$

iii. Thus the sequence of partial sums $(s_m)_{m\geq 2}$ is convergent with limit 1: use the above expression to see that $s_m = 1 - \frac{1}{m} \to 1$ as $m \to \infty$.

(b) The sequence (t_m) is increasing since

$$t_{m+1} = \sum_{n=1}^{m+1} \frac{1}{n^2} = \sum_{n=1}^m \frac{1}{n^2} + \frac{1}{(m+1)^2} = t_m + \frac{1}{(m+1)^2} \ge t_m.$$

Moreover, for each $n = 1, 2, 3, \ldots$,

$$n^2 \ge n(n-1) \implies \frac{1}{n^2} \le \frac{1}{n(n-1)}$$

and

$$t_m = \sum_{n=1}^m \frac{1}{n^2} = 1 + \sum_{n=2}^m \frac{1}{n^2} \le 1 + \sum_{n=2}^m \frac{1}{n(n-1)} = 1 + s_m < 1 + 1 = 2.$$

The last inequality holds because (s_m) is an increasing sequence with limit 1. Thus, (t_m) is a bounded, increasing sequence, and hence convergent by the M+B Theorem.

Challenging Problems

- C1. In this problem you will determine a continued fraction expansion of the real number $\sqrt{2}$.
 - (a) Let (a_n) be a sequence. Show that if $\lim_{n\to\infty} a_{2n} = L$ and $\lim_{n\to\infty} a_{2n+1} = L$ then (a_n) is convergent and $\lim_{n\to\infty} a_n = L$.
 - (b) Define the sequence (a_n) where

$$a_1 = 1, \quad a_{n+1} = 1 + \frac{1}{1+a_n}, \ n = 1, 2, 3, \dots$$

- i. Write down the first eight terms of (a_n) .
- ii. Use part (a) to show that (a_n) is convergent and $\lim_{n\to\infty} = \sqrt{2}$. Deduce the **continued** fraction expansion

$$\sqrt{2} = 1 + \frac{1}{2 + \frac{1}{2 + \dots}}$$

- C2. In this problem you will show the existence of Euler's constant γ . It is not know whether γ is rational or irrational.
 - (a) Show that

$$\frac{1}{n+1} < \log(n+1) - \log(n) < \frac{1}{n},$$

where $\log(x)$ is the natural logarithm function.

(b) Define

$$a_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} - \log(n), \qquad n = 1, 2, 3, \dots$$

Show that the sequence (a_n) is decreasing and that $a_n \ge 0$, for each n. The limit $\gamma = \lim_{n \to \infty} a_n$ is known as *Euler's constant*, after Leonhard Euler (1707-1783).