

Problems for submission

- A1. Consider the sequence (a_n) , where $a_n = \frac{1}{n^3+10}$. In this problem you will show that (a_n) is convergent with limit L = 0 using the Squeeze Theorem.
 - (a) Carefully explain why the sequence (b_n) , where $b_n = 0$, is convergent with limit L = 0.
 - (b) Carefully explain why the sequence (c_n) , where $c_n = \frac{1}{n^3}$, is convergent with limit L = 0.
 - (c) Using the Squeeze Theorem, carefully explain why (a_n) is convergent with limit L = 0.
- A2. We introduce the following definitions:
 - a sequence (a_n) is **bounded above** if there exists M such that $a_n \leq M$, for every $n \geq 1$. We call M an **upper bound** of (a_n) .
 - a sequence (a_n) is **bounded below** if there exists m such that $a_n \ge m$, for every $n \ge 1$. We call m a **lower bound** of (a_n) .
 - a sequence (a_n) is alternating if $a_n a_{n+1} < 0$, for every $n \ge 1$; that is, any two consecutive terms must have opposite sign.

For each of the following sequences $(a_n)^1$, determine which of the properties hold. You do not have to provide justification.

- (i) bounded above, bounded below. If bounded above (resp. below) provide an explicit upper (resp. lower) bound.
- (ii) increasing, decreasing or alternating.
- (iii) convergent, divergent.

a)
$$a_n = \frac{2n^2}{n^2 + 1}$$
 b) $a_n = \frac{2n}{n^2 + 1}$ c) $a_n = \sin(1/n)$ d) $a_n = 4 - \frac{(-1)^n}{n}$ e) $a_n = \frac{n^2 - (-1)^n}{n}$
f) $a_n = \frac{2^n}{(-\pi)^n}$ g) $a_n = \frac{5 - 2n}{n + 5}$ h) $a_n = \frac{\sin(n)}{n}$ i) $a_n = \sqrt{n + 1} - \sqrt{n}$ j) $a_n = \frac{(n!)^2}{(2n)!}$.

- A3. Consider the sequence (a_n) , where $a_n = \frac{1}{n^2+1}$. In this problem you will show directly that (a_n) is convergent with limit L = 0.
 - (a) Explain why $|a_n| = a_n$, for every natural number n.
 - (b) Determine a natural number N so that, if $n \ge N$ then $|a_n| < 20$.
 - (c) Determine a natural number N so that, if $n \ge N$ then $|a_n| < \frac{1}{10}$.
 - (d) Determine a natural number N so that, if $n \ge N$ then $|a_n| < 2^{-16}$.
 - (e) Let $\varepsilon > 0$. Determine a natural number N so that, if $n \ge N$ then $|a_n| < \varepsilon$. (*Hint: the natural number N will depend on* ε .)
- A4. Consider the series $\sum_{n=1}^{\infty} (-1)^n$.
 - (a) Write down the first five partial sums s_1, s_2, s_3, s_4, s_5 . What is a general expression for s_n ?
 - (b) Is the series $\sum_{n=1}^{\infty} (-1)^n$ convergent or divergent? Explain your answer carefully.

¹Given a natural number *n*, define *n*! (*n* factorial) to be the product $n! \stackrel{def}{=} 1 \cdot 2 \cdot 3 \cdots (n-2) \cdots (n-1) \cdot n$.

- A5. For each of the following series determine whether the series converges or diverges; make sure you justify your conclusion. If the series converges determine its limit.
 - a) $\sum_{n=1}^{\infty} \frac{1}{5^n}$ b) $\sum_{n=1}^{\infty} 3\left(\frac{-1}{4}\right)^{n-1}$ c) $\sum_{n=0}^{\infty} \frac{5}{10^{3n}}$ d) $\sum_{n=5}^{\infty} \frac{1}{(2+\pi)^{2n}}$ e) $\sum_{n=2}^{\infty} \frac{(-5)^n}{8^{2n}}$ f) $\sum_{n=1}^{\infty} \frac{3+2^n}{2^{n+2}}$ g) $\sum_{n=1}^{\infty} \frac{3+2^n}{3^{n+2}}$ h) $\sum_{n=1}^{\infty} \frac{1}{n(n+2)}$ i) $\sum_{n=1}^{\infty} \frac{1}{(2n-1)(2n+1)}$ j) $\sum_{n=1}^{\infty} \frac{n}{2n+1}$.

Additional recommended problems (not for submission)

- B1. Let f(x) be a differentiable function, defined for all $1 \le x < \infty$ (and possibly on a larger domain). Consider the sequence $(a_n)_{n\ge 1}$, where $a_n = f(n)$.
 - (a) Suppose that $f'(x) \ge 0$, for all $1 \le x < \infty$. Is the sequence (a_n) increasing, decreasing or neither?
 - (b) Suppose that $f'(x) \leq 0$, for all $1 \leq x < \infty$. Is the sequence (a_n) increasing, decreasing or neither?
 - (c) Consider the sequence (a_n) , where $a_n = \cos\left(\frac{\pi}{n}\right)$. In this problem you will use your results above to show that (a_n) is a convergent sequence.
 - i. Let $f(x) = \cos\left(\frac{\pi}{x}\right)$. Show that $f'(x) = \frac{\pi \sin(\pi/x)}{x^2}$. (*Hint: chain rule!*)
 - ii. Explain why $\sin(\pi/x) \ge 0$ whenever $x \ge 1$.
 - iii. Explain carefully why (a_n) is an increasing sequence.
 - iv. Show that (a_n) is a bounded sequence and deduce that (a_n) is a convergent sequence.
 - v. What do you think the limit of the sequence (a_n) is? Justify your answer.

B2. Let (a_n) be a sequence satisfying $a_n > 0$, for every n = 1, 2, 3, ... Complete the following statements:

- (a) (a_n) is increasing is equivalent to $\frac{a_{n+1}}{a_n} \ge$, for every n = 1, 2, 3, ...
- (b) (a_n) is decreasing is equivalent to $\frac{a_{n+1}}{a_n} \leq \underline{\qquad}$, for every $n = 1, 2, 3, \ldots$

B3. Let (a_n) be a sequence.

• We say that (a_n) diverges to $+\infty$ if, for every real number K there exists a natural number N such that

 $n \ge N \implies a_n > K.$

We write, by abuse of notation, $\lim_{n\to\infty} a_n = +\infty$.

• We say that (a_n) diverges to $-\infty$ if, for every real number K there exists a natural number N such that

 $n \ge N \implies a_n < K.$

We write, by abuse of notation, $\lim_{n\to\infty} a_n = -\infty$.

(a) Determine whether the given sequence (a_n) diverges to $+\infty$, $-\infty$, neither.

a)
$$a_n = n$$
 b) $a_n = (-1)^n n$ c) $a_n = 2n + (-1)^n$ d) $\frac{n^2 - 4}{n+5}$ e) $a_n = \frac{(2n)!}{2(n!)}$

- (b) Let c be a real number. Give an example of sequences (a_n) , (b_n) such that $\lim_{n\to\infty} a_n = +\infty$, $\lim_{n\to\infty} b_n = -\infty$ and $\lim_{n\to\infty} (a_n + b_n) = c$.
- (c) Suppose that (a_n) is a sequence that diverges to $+\infty$.
 - i. Let (b_n) be a sequence such that $b_n \ge a_n$, for each n = 1, 2, 3, ... Does (b_n) diverge to $+\infty$, $-\infty$, neither $\pm\infty$, or is there not enough information to decide?
 - ii. Let (b_n) be a sequence such that $b_n \leq a_n$, for each $n = 1, 2, 3, \ldots$ Does (b_n) diverge to $+\infty$, $-\infty$, neither $\pm\infty$, or is there not enough information to decide?

- iii. Let (b_n) be a sequence such that $b_{2n} \ge a_{2n}$, for each n = 1, 2, 3, ... Does (b_n) diverge to $+\infty$, $-\infty$, neither $\pm\infty$, or is there not enough information to decide?
- B4. Consider the sequence (a_n) , where

$$a_n = \frac{\alpha_r n^r + \alpha_{r-1} n^{r-1} + \ldots + \alpha_1 n + \alpha_0}{\beta_s n^s + \beta_{s-1} n^{s-1} + \ldots + \beta_1 n + \beta_0}.$$

Here $\alpha_0, \ldots, \alpha_r, \beta_0, \ldots, \beta_s$ are constants, $\alpha_r, \beta_s \neq 0$.

- (a) Let r < s. Use the Limit Laws for Sequences to show that (a_n) is convergent with limit L = 0.
- (b) Let r = s. Use the Limit Laws for Sequences to show that (a_n) is convergent with limit $L = \frac{\alpha_r}{\beta_s}$.
- B5. (For students who have seen mathematical induction) In this problem you will determine an approach to approximating the real number $\sqrt{2}$. Let $a_1 = 1$, and define $a_{n+1} = \sqrt{1 + 2a_n}$, for n = 1, 2, 3, ...
 - (a) Write down the first five terms a_1, a_2, a_3, a_4, a_5 .
 - (b) Show that the sequence (a_n) is increasing. (*Hint: use induction*)
 - (c) Show that the sequence (a_n) is bounded above by 3. (*Hint: use induction*)
 - (d) Deduce that (a_n) is convergent. Let $L = \lim_{n \to \infty} a_n$ denote the (yet to be determined) limit of (a_n) .
 - (e) Consider the sequence (b_n) , where $b_n = \sqrt{1 + 2a_n}$. Explain carefully why $\lim_{n\to\infty} b_n = \lim_{n\to\infty} a_n$. Deduce that $L = 1 + \sqrt{2}$.
 - (f) Use the previous problem to describe an approach to determine an approximation of the real number $\sqrt{2}$ to within 10 decimal places.
- B6. Is the following sequence convergent? If yes, determine its limit; if no, explain why not.

$$\sqrt{2}, \sqrt{2\sqrt{2}}, \sqrt{2\sqrt{2\sqrt{2}}}, \dots$$

B7. Let (a_n) be a sequence.

- We say that (a_n) is eventually increasing if there is some natural number E such that the sequence $(a_n)_{n\geq E}$ is increasing.
- We say that (a_n) is eventually decreasing if there is some natural number F such that the sequence $(a_n)_{n\geq F}$ is decreasing.

Suppose that (a_n) is eventually increasing/eventually decreasing and bounded. Show that (a_n) is convergent.

B8. In this problem you will show that the series $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converges.

- (a) Consider the series $\sum_{n=2}^{\infty} \frac{1}{n(n-1)}$ and denote its partial sums s_1, s_2, s_3, \ldots
 - i. Write down the partial sums s_2, s_3, s_4, s_5, s_6 .
 - ii. Show that $\sum_{n=2}^{m} \frac{1}{n(n-1)} = 1 \frac{1}{m}$, for m = 2, 3, 4, ...
 - iii. Conclude that $\sum_{n=2}^{\infty} \frac{1}{n(n-1)}$ converges and determine its limit.
- (b) Consider the series $\sum_{n=1}^{\infty} \frac{1}{n^2}$ and denote its partial sums t_1, t_2, t_3, \ldots Show that $t_n \leq s_n$, for $n = 2, 3, 4, \ldots$ and deduce that $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converges. (*Hint: show that the sequence* $(t_m)_{m\geq 1}$ *is increasing*)

Challenging Problems

- C1. In this problem you will determine a continued fraction expansion of the real number $\sqrt{2}$.
 - (a) Let (a_n) be a sequence. Show that if $\lim_{n\to\infty} a_{2n} = L$ and $\lim_{n\to\infty} a_{2n+1} = L$ then (a_n) is convergent and $\lim_{n\to\infty} a_n = L$.
 - (b) Define the sequence (a_n) where

$$a_1 = 1, \quad a_{n+1} = 1 + \frac{1}{1+a_n}, \ n = 1, 2, 3, \dots$$

- i. Write down the first eight terms of (a_n) .
- ii. Use part (a) to show that (a_n) is convergent and $\lim_{n\to\infty} = \sqrt{2}$. Deduce the **continued** fraction expansion

$$\sqrt{2} = 1 + \frac{1}{2 + \frac{1}{2 + \dots}}$$

- C2. In this problem you will show the existence of Euler's constant γ . It is not know whether γ is rational or irrational.
 - (a) Show that

$$\frac{1}{n+1} < \log(n+1) - \log(n) < \frac{1}{n},$$

where $\log(x)$ is the natural logarithm function.

(b) Define

$$a_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} - \log(n), \qquad n = 1, 2, 3, \dots$$

Show that the sequence (a_n) is decreasing and that $a_n \ge 0$, for each n. The limit $\gamma = \lim_{n \to \infty} a_n$ is known as *Euler's constant*, after Leonhard Euler (1707-1783).