
Calculus II: Fall 2017
Contact: gmelvin@middlebury.edu

Group Projects

Project Prompt:
The Middlebury College Museum of Art is having a special semester-long focus on calculus, titled

The Joy of Sequences & Series. The Museum will display important items from the history of the
development of calculus (e.g. Newton’s wig, a painting created out of the first 100 million digits of
π, a rectangular field having a fixed perimeter and largest area), and is expected to welcome many
of the world’s top mathematicians, scientists, artists, historians, musicians, and world leaders.

Due to your unparalleled command of derivatives, integrals, sequences and series, Middlebury
College has chosen you, along with some of your fellow classmates, to produce a report/poster to
be included in The Joy of Sequences and Series. Your report/poster will be on display during the
exhibit and is intended to introduce the audience to an interesting piece of mathematics and provide
some historical context.

Your report/poster must focus on one of three allowed themes and must include certain aspects to
be considered for publication: these required topics are described in the Project Themes below. You
should consider that your report is to be read by the general population who may or may not have a
college-level mathematical background. In particular, you will want to convey technical ideas and/or
calculations in a down-to-earth manner, making sure you present the main ideas of a mathematical
argument in an accessible manner. You may assume that readers are familiar with the mathematical
notation seen in a standard college-level calculus course, however. You are also granted creative
license to demonstrate an interesting application of your main topic, or expand on some historical or
mathematical aspect of interest.

You will be provided with one 24”× 36” poster upon which you are free to paste text, drawings,
diagrams, digital images etc. You are actively encouraged to include diagrams and visualisations to
help make your report/poster interesting and approachable to the lay person and/or to emphasise a
particular mathematical calculation or idea.

Grading:
Your final project score will consist of three components: reflection (15 points), evaluation (15

points) and production (30 points).

1. Production (30 points): This will depend solely on the report/poster produced by the group.
A precise rubric outlining the grading of reports/posters will be posted at the Course Website.

2. Reflection (15 points): You will have to submit a 350-500 word summary outlining your con-
tribution to the project and reflecting on what you learned and/or had difficulties with. You
should also discuss your role in the group and reflect on how you interacted and contributed to
the group process. A precise rubric outlining the grading this component of your score will be
posted at the Course Website.

3. Evaluation (≤ 15 points): You will have to evaluate your fellow group members and their
contribution to the project. If all group members contribute equally to the group then each
group member will receive 15 points. Otherwise, your group will have to come to a consensus
and apportion your group’s Evaluation points accordingly. An outline of how to do this will be
posted at the Course Website.



Project themes

1. How Newton discovered the Binomial Series:

The Binomial Theorem states that, for k a natural number, the following identity holds

(a+ b)k =
k∑

n=0

(
k

n

)
ak−nbn, where

(
r

s

)
=

r!

s!(r − s)!
, for integers 0 ≤ s ≤ r .

This formula was discovered independently by Hindu, Chinese and Islamic mathematicians over
a thousand years ago. Around 1665, at the age of 22, Isaac Newton determined the following
result:

Binomial Series Theorem

Let k be a fraction and |x| < 1. Then,
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Newton arrived at the determination of the limit of this series through investigations into the
area under the curves y = (1− x2)n/2 from 0 to x for n = 1, 2, 3, . . .. Newton explained how he
came to this result in two letters (the epistola prior and epistola posterior) that he had sent (via
Henry Oldenburg, secretary of the Royal Society) to his contemporary Gottfried W. Leibniz,
the renowned German polymath. The exchange between Newton and Liebniz demonstrates
some of the intellectual property issues facing 17th Century academics and provides evidence
of the well-known feud that existed between these two famous scientists.

Write a report outlining Newton’s discovery of the binomial series theorem and his correspon-
dence with Liebniz.

Your project must contain the following elements:

(a) Show that, whenever k > 0 is an integer, the Binomial Series Theorem recovers the
Binomial Theorem. Show that, when k = −1, the Binomial Series Theorem recovers the
Geometric Series Theorem. Deduce that the Binomial Series Theorem is a generalisation
of both the Binomial Theorem and the Geometric Series Theorem.

(b) Describe the original statement given by Newton (see epistola prior on p. 285 of iv. or
page 402 of ii.)

(c) Explain why Newton’s version of the Binomial Series Theorem is equivalent to the state-
ment given above.

(d) Read Newton’s epistola posterior (page 287 in iv. or page 404 in ii.) and explain the
patterns Newton discovered in the areas under the curves y = (1 − x2)n/2. Explain how
these discoveries led to the Binomial Series Theorem.



(e) Explain how Newton guessed the areas under the curves y = (1 − x2)n/2 when n is odd,
and how he verified his answers.

(f) Let k = 1, 2, 3, . . .. Verify Newton’s guess by determining the area∫ 1

−1

√
(1− x2)2k+1dx = 2

∫ 1

0

√
(1− x2)2k+1dx

If you have trouble showing the result in general then try determining the result for specific
values of k.

In addition to the above required topics, you must discuss at least one of the following topics:

(a’) Using the Binomial Series Theorem to approximate
√

2, and other real numbers: investi-
gate how you may apply the Alternating Series Test to the Binomial Series Theorem to
approximate real numbers. In your opinion, does the binomial series provide an efficient
approach to approximating real numbers?

(b’) Elaborate further on the feud between Liebniz and Newton: what were the point(s) of
contention? What evidence can you find detailing their feud? Whose side are you on? See
Reference v. for biographical background on Newton and Leibniz.

(c’) Any other topic of interest related to this project.

Resources: The following resources are available in the Davis Family Library. If you need
help locating them then ask a College librarian (or me). Feel free to use further resources (there
will be many!) to discover more about the life of Newton and/or Leibniz.

Resources ii. and iv. provide copies of Newton’s letter, while i. and iii. provide some commen-
tary.

i. C.H. Edwards, The Historical Development of Calculus, pp. 178-187

ii. J. Fauvel and J. Gray, Eds., The History of Mathematics: A Reader

iii. V. Katz, A History of Mathematics: An Introduction pp. 463-466

iv. D. J. Struik, Ed., A Sourcebook in Mathematics 1200-1800

v. E. T. Bell, Men of Mathematics, Ch. 6 (Newton), Ch. 7 (Leibniz)



2. Infinite products and a formula for π:

John Wallis was an English mathematician and contemporary of Isaac Newton who served as the
chief cryptographer for the British parliament and Royal Court. Among his many contributions
to mathematics, Wallis is credited with introducing the symbol ∞ for infinity. Wallis was a
fierce champion of the English scientific community and engaged in several prolonged feuds
with some of the preeminent scientists and philosophers of the time, including Hobbes, Fermat,
Pascal and Descartes.

Wallis discovered a remarkable formula that can be used to approximate π, the Wallis Product
Formula:

2

1
· 2

3
· 4

3
· 4

5
· · · = π

2

The left hand side of the above expression is called an infinite product, and is a ‘product version’
of an infinite series. In general, given a sequence of nonzero real numbers (an), the mth partial
product is

pm = a1a2 · · · am
If the associated sequence of partial products (pm) converges to a nonzero limit then we define
the infinite product to be the limit

∞∏
i=1

ai
def
= lim

m→∞
pm

The theory of infinite products can be developed in a similar way to the theory of infinite
series and is related to many familiar functions. For example, in the mid-1700s Euler guessed
(correctly!) that the function sin(x) can be expressed in terms of infinite products:

sin(x) = x
∞∏
i=1

(
1− x2

π2n2

)
, for any x.

In this project you will investigate some of the basic theory of infinite products and outline a
verification of the Wallis Product Formula for π.

Your project must contain the following elements.

(a) Let (bn) be a sequence of nonzero real numbers. Discuss what it means for an infinite prod-
uct

∏∞
n=1 bn to converge/diverge. Determine the convergence/divergence of the harmonic

product
∏∞

n=2(1−
1
n
) and

∏∞
n=2

(
1− 1

n2

)
. See Reference i. for details.

(b) Define the Wallis sequence (wn), where
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, . . .

)



Explain why the Wallis Product Formula is equivalent to showing that the limit of the
infinite product

∞∏
n=1

wn =
π

2

(c) Complete the following steps to determine the Wallis product formula (see Reference iii.

for further details). For each natural number n, define In =
∫ π/2
0

sinn(x)dx.

i. Let n be a natural number. Explain why 0 ≤ sinn+1(x) ≤ sinn(x), for all 0 ≤ x ≤ π/2.

ii. Use part i. to explain why the sequence (I1, I2, I3, . . .) is decreasing. In particular,

I2n+2 ≤ I2n+1 ≤ I2n

iii. Let n be a natural number. Using induction, show that

I2n+1 =

∫ π/2

0

sin2n+1(x)dx =
2 · 4 · 6 · · · · · 2n

3 · 5 · 7 · · · · · (2n+ 1)

and

I2n =

∫ π/2

0

sin2n(x)dx =
1 · 3 · 5 · 7 · · · · · (2n− 1)

2 · 4 · 6 · · · · · 2n
π

2

and deduce that
I2n+2

I2n
=

2n+ 1

2n+ 2

(Hint: use the reduction formulae from Problem Set 5)

iv. Use the previous problems to show that

2n+ 1

2n+ 2
≤ I2n+1

I2n
≤ 1.

Explain why limn→∞
I2n+1

I2n
= 1.

v. Use the previous results to show that
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Deduce the Wallis Product Formula.

vi. Explain how you can rediscover the Wallis Product Formula from Euler’s Product
Formula for sin(x).

In addition to the above required topics, you must discuss at least one of the following topics:

(a’) Use Wallis’s Product Formula to approximate π. In your opinion, does the Product For-
mula provide an efficient approximation of π?

(b’) Provide a brief account of the controversy between Wallis and the French mathematician
Fermat. (See Reference iv. for details).

(c’) Any other topic of interest related to this project.

Resources: Unless otherwise indicated, the following resources are available in the Davis
Family Library. If you need help locating them then ask a College librarian (or me). Feel free
to use further resources (there will be many!) to discover more about the life of Wallis and his
interactions with other famous scientists of the 17th Century.



i. Introductory notes on infinite products. Available at Course Website.

ii. The Wallis Product Formula for π and Its Proof. Video, available at Course Website.

iii. D. J. Struik, Ed., A Sourcebook in Mathematics 1200-1800

iv. J. Stedall, John Wallis and the French: his quarrels with Fermat, Pascal, Dulaurens and
Descartes



3. The Bernoullis, Euler and the Basel Problem

The Swiss-based Bernoulli family was one of the most famous families in the history of science.
During the mid-late 17th Century and 18th Century, several Bernoullis (Jacob, Johann I, II,
III, Nicolaus I, II) made significant contributions to mathematics and the physical sciences. In
addition to their own contributions, the Bernoullis were well-known for popularising difficult
challenge problems to the European scientific community at large. One of these problems
(originally posed in 1644 by the Italian mathematician P. Mengoli) was to determine the limit
of the series

∞∑
n=1

1

n2

This problem became known as the Basel problem (after the location of the publishing house
of Jacob Bernoulli). Several of the Bernoulli family made estimates for the limit

• Jacob: < 2,

• Johann/Daniel: ∼ 8
5
.

In 1735, at the age of 28, Euler provided the first determination of this limit, and thereby
solving the Basel problem, showing that

∞∑
n=1

1

n2
=
π2

6
.

Miraculously, Euler’s methods could be adapted to determine the limit of all p-series of the
form

∑∞
n=1

1
n2k . However, an exact determination of

∑∞
n=1

1
n2k+1 remains an unsolved problem

to this day.

In this project you will investigate some of the contributions of the Bernoulli family to mathe-
matics and Euler’s solution to the Basel problem.

Your project must contain the following elements.

(a) Use a telescoping series argument to evaluate

∞∑
n=1

2

n(n+ 1)
= 2.

Deduce, by a direct comparison, that
∑∞

n=1
1
n2 < 2.

(b) Consider the curves y = xn, 0 ≤ x ≤ 1,for n = 0, 1, 2, 3, . . .. By considering the areas
between successive curves, give a geometric demonstration of the fact that

∞∑
n=1

1

n(n+ 1)
= 1

(c) Explain, following p. 40-42 of Reference i., Jacob Bernoulli’s determination of the series

a

b
+
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+
a+ 2c

bd2
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a

b
+
∞∑
n=1

a+ nc

bdn



Here a, b, c, d are integers, and we require d > 1. Use this to determine the limit of the
series

∑∞
n=1

n
2n

.

(d) To determine Euler’s proof of the Basel problem you will need the following version of
Newton’s Binomial Series Theorem (which you can use without proof): for |x| < 1, k a
fraction,

1 +
∞∑
n=1

(−1)n
k(k − 1) · · · (k − (n− 1))

n!
xn = (1− x)k

Show that the Binomial Series Theorem implies that

(1− t2)−1/2 = 1 +
1

2
t2 +

1 · 3
22 · 2!

t4 +
1 · 3 · 5
23 · 3!

t6 + . . .

(e) Suppose, as Euler did, that you are able to integrate functions defined by series termwise
so that∫ x

0

1√
1− t2

dt =

∫ x

0

1dt+

∫ x

0

1

2
t2dt+

∫ x

0

1 · 3
22 · 2!

t4dt+

∫ x

0

1 · 3 · 5
23 · 3!

t6dt+ . . .

Explain why

arcsin(x) = x+
1

2
· x

3

3
+

1 · 3
2 · 4

· x
5

5
+

1 · 3 · 5
2 · 4 · 6

· x
7

7
+ . . .

(f) Use the Fundamental Theorem of Calculus to explain why

1

2
(arcsin(x))2 =

∫ x

0

arcsin(t)√
1− t2

dt

(g) Use integration by parts to determine the reduction formula∫ 1

0

tn+2

√
1− t2

dt =
n+ 1

n+ 2

∫ 1

0

tn√
1− t2

dt, n = 1, 2, 3, . . .

(h) Use your computations above to outline, following p.55-57 of Reference i., Euler’s 1741
proof of the Basel problem.

In addition to the above required topics, you must discuss at least one of the following topics.

(a’) Euler’s original 1734 proof of the Basel problem was considered somewhat mysterious, and
was criticized for containing incomplete arguments that utilised an infinite product expan-
sion for sin(x). Explain briefly Euler’s product expansion for sin(x) and why Euler’s use
of this product expansion was consider incomplete. (See Reference i. p.46 and Reference
ii.).

(b’) Outline some of the contributions of the Bernoulli family to mathematics and the physical
sciences: for example, the Brachistrone problem, the Bernoulli principle (fluid dynamics),
the Bernoulli distribution (probability), or anything else!

(c’) Any other topic of interest related to this project.

Resources: Unless otherwise indicated, the following resources are available in the Davis
Family Library. If you need help locating them then ask a College librarian (or me). Feel free
to use further resources (there will be many!) to discover more about the life of the Bernoullis,
Euler and other famous scientists of the 17/18th Century.



i. W. Dunham, Euler: The Master of Us All

ii. E. Sandifer, How Euler Did It Available at Course Website.

iii. D. J. Struik, Ed., A Sourcebook in Mathematics 1200-1800

iv. E. T. Bell Men of Mathematics, Ch. 8 (The Bernoullis), Ch. 9 (Euler)


