
Calculus II: Fall 2017
Contact: gmelvin@middlebury.edu

Practice Examination I

Instructions:

• You will have 60 minutes to complete this Examination.

• You must attempt Problem 1.

• Please attempt at least three of Problems 2, 3, 4, 5.

• If you attempt all five problems then your final score will be the sum of your score for Problem 1
and the scores for the three remaining problems receiving the highest number points.

• Calculators are not permitted.

• Explain your answers clearly and nearly and in complete English sentences. State all Theorems you
have used from class. To recieve full credit you will need to justify each of your calculations and
deductions coherently and fully.

• Correct answers without appropriate justification will be treated with great skepticism.

• Write your name on this exam and any extra sheets you hand in.

Question 1: 10/10

Question 2: 20/20

Question 3: 20/20

Question 4: 20/20

Question 5: 20/20

Total: 70/70

Name: Carl Friedrich Gauss



1. (10 points) True/False: you do not need to justify your solution.

(a) Let (an) be a sequence. If the sequence of even terms (a2, a4, a6, . . .) is convergent with limit L
then (an) is convergent with limit L.

(b) Let ∑an be a series. If the associated sequence of partial sums (sm) is decreasing and bounded
then the sequence (an) is convergent.

(c) Let (an) be a bounded sequence. Suppose that there exists N such that the sequence (an)n≥N
is decreasing. Then, (an) is convergent.

(d) Let ∑an be a series such that an > 0. Let (sm) be the associated sequence of partial sums. If
there exists K such that sm <K, for m = 1,2,3, . . ., then ∑an is convergent.

(e) Let ∑(−1)nbn, where bn > 0, be an alternating series. If ∑ bn is convergent then ∑(−1)nbn is
convergent.

Solution:

(a) False: consider the sequence

(an) = (1,0,2,0,3,0,4,0,5,0, . . .)

Then, a2n = 0, for every n. In particular, the sequence (a2n) is convergent. However, the
sequence (an) is unbounded and therefore divergent.

(b) True: if (sm) is decreasing and bounded then (sm) is convergent, by Monotonic+Bounded
Theorem. Hence, the series ∑an is convergent. Therefore, (an) is convergent (and liman = 0).

(c) True: consider the sequence
(aN , aN+1, aN+2, aN+3, . . .)

This sequence is decreasing and bounded, hence convergent. Since the limit of a sequence is
only dependent on its behaviour as n→∞ we have that the sequence

(a1, a2, . . . , aN , aN+1, . . .)

is also convergent.

(d) True: As the series has positive terms the sequence of partial sums (sm) is a strictly increasing
sequence. Also, for every m, 0 < sm <K so that the sequence of partial sums is bounded. Hence,
the sequence (sm) is convergent by the Monotonic+Bounded Theorem. This means the series

∑an is convergent.

(e) Corrected! True: if∑ bn is convergent then∑(−1)nbn is absolutely convergent, hence convergent.



2. Determine if the following sequences converge or diverge. If the sequence converges determine the
limit. Give a careful explanation of your solution.

(a) (10 points)

(
sin( 1n)

2n
)
n≥1

(b) (10 points)

(
n

2 + (−1)n
)
n≥1

Solution:

(a) Let bn = −
1
2n , cn =

1
2n . Then, for all n we have

bn ≤
sin(1/n)

2n
≤ cn

Also, the sequences (bn) and (cn) are convergent and

lim
n→∞ bn = lim

n→∞ cn = 0.

This follows because if −1 < x < 1 then (xn) is convergent with limit 0.

Hence, by the Squeeze Theorem the sequence ( sin(1/n)2n ) is convergent with limit 0.

(b) The first few terms of the sequence are

1,
2

3
,3,

4

3
,5,

6

3
,7,

8

3
, . . .

In particular, for any n, we have
n

2 + (−1)n
≥
n

3
.

Since the sequence (n3 ) is unbounded the same is true of the sequence ( n
2+(−1)n). Hence, the

sequence ( n
2+(−1)n) is divergent.



3. (20 points) Consider the sequence (an), where

an =
2n

n!
, n = 1,2,3, . . .

(a) Show that (an) is a decreasing sequence.

(b) Determine an upper and lower bound for the sequence (an).

(c) Explain carefully why the series (an) is convergent.

(d) Determine limn→∞ an.

Solution:

(a) For n = 1,2,3, . . ., we have

an+1 =
2n+1

(n + 1)!
=

2 ⋅ 2n

(n + 1)n!
=

2

(n + 1)
⋅
2n

n!
=

2

(n + 1)
an ≤ an

where the last inequality holds because 2
n+1 ≤ 1 whenever n = 1,2,3, . . ..

(b) Obviously an > 0, for every n, so that 0 is a lower bound. Since the sequence is decreasing we
have an ≤ a1 = 2, for each n. Hence, 2 is an upper bound.

(c) The sequence (an) is decreasing and bounded. Hence, by the Monotonic+Bounded Theorem it
is convergent.

(d) It seems like the sequence is converging to 0. Lets show this using the Squeeze Theorem. We
let bn = 0 and need to detemrine a candidate for cn so that

bn ≤ an ≤ cn, n = 1,2,3, . . .

Let’s analyse an: we have

an =
2n

n!
=

2 ⋅ 2 ⋅ 2 ⋅ ⋯ ⋅ 2

1 ⋅ 2 ⋅ 3 ⋅ ⋯ ⋅ n
≤

2

1
⋅ 1 ⋅ 1 ⋅ ⋯ ⋅

2

n
=

4

n

since 2
3 ≤ 1, 2

4 ≤ 1,. . . , and 2
n−1 ≤ 1.

Let cn =
4
n . Then, (cn) is convergent and limn→∞ cn = 0. Similarly, (bn) is convergent with limit

0. So, by the Squeeze Theorem we have liman = 0.



4. (20 points) Determine if the following series is convergent or divergent. If convergent you do not
need to determine its limit. Justify your answer carefully.

∞
∑
n=1

sin(n)

7n − 2n

Solution: We will show that the series is absolutely convergent, hence it must be convergent. Now,

∣
sin(n)

7n − 2n
∣ ≤

1

7n − 2n

We will show that the series ∑
∞
n=1

1
7n−2n is convergent. Hence, by the Direct Comparison Test the

series ∑ ∣
sin(n)
7n−2n ∣ is convergent, so that the series ∑

sin(n)
7n−2n is absolutely convergent.

We will show that the series ∑ 1
7n−2n is convergent by comparing it with the series ∑ 1

7n . Indeed, since

1

7n − 2n
⋅
7n

1
=

7n

7n − 2n
=

1

1 − (27)
n
→

1

1 − 0
= 1, as n→∞,

and the geometric series ∑ 1
7n is convergent (Geometric Series Theorem with r = 1

7), the series ∑ 1
7n−2n

is convergent. The result follows.



5. (20 points) Determine whether the following series is absolutely convergent, conditionally convergent
or divergent. If convergent you do not need to determine its limit. Justify your answer carefully.

∞
∑
n=1
(−1)n+1nπ−n

2

= π−1 − 2π−4 + 3π−9 − . . .

Solution: First we check whether the series is absolutely convergent. We see that

∣(−1)n+1nπ−n
2
∣ =

n

πn2

Let’s try to apply the Root Test and see what happens: we have

n
√
∣(−1)n+1nπ−n2

∣ = n

√
n

πn2 = n
√
n ⋅

1

πn
→ 1 ⋅ 0 = 0 < 1 as n→∞.

Here we have used the Root Rule n
√
n→ 1 as n→∞, and the fact that 1

πn → 0 as n→∞. Hence, by
the Root Test the series is absolutely convergent.


