Middlebury
College

Infinite Products

In this note we develop the notion of an infinite product. Infinite products are analogs of series (i.e 'infinite sums'). The basic notions and some examples are discussed.
Let $\left(b_{n}\right)$ be a sequence of nonzero real numbers.

1. The $m^{\text {th }}$ partial product associated to $\left(b_{n}\right)$ is

$$
p_{m}=b_{1} b_{2} \cdots b_{m} .
$$

2. The sequence of partial products associated to $\left(b_{n}\right)$ is the sequence $\left(p_{m}\right)$, where p_{m} is the $m^{t h}$ partial product associated to $\left(b_{n}\right)$.
3. If the sequence $\left(p_{m}\right)$ of partial products associated to $\left(b_{n}\right)$ is convergent and $L=\lim _{m \rightarrow \infty} p_{m} \neq$ 0 , then we say that

$$
\prod_{n=1}^{\infty} b_{n}=L=\lim _{m \rightarrow \infty} p_{m}
$$

We call $\prod_{n=1}^{\infty} b_{n}$ an infinite product. In this case, we say the infinite product $\prod_{n=1}^{\infty} b_{n}$ converges; otherwise, the infinite product diverges. In particular, if $\lim p_{m}=0$ then the infinite product diverges.

Example:

1. Let $b_{n}=\frac{n-1}{n}=1-\frac{1}{n}$, for $n=2,3,4, \ldots$. Then,

$$
b_{2}=\frac{1}{2}, b_{3}=\frac{2}{3}, b_{4}=\frac{3}{4}, \ldots
$$

The partial products associated to $\left(b_{n}\right)$ are

$$
p_{2}=b_{2}=\frac{1}{2}, p_{3}=b_{2} b_{3}=\frac{1}{3}, p_{4}=b_{2} b_{3} b_{4}=\frac{1}{4}, \ldots
$$

In general,

$$
p_{m}=b_{1} b_{2} \cdots b_{m}=\frac{1}{2} \cdot \frac{2}{3} \cdot \frac{3}{4} \cdots \frac{m-1}{m} \cdot \frac{m}{m+1}=\frac{1}{m+1}
$$

Hence, $\lim _{m \rightarrow \infty} p_{m}=0$ and the infinite product diverges.
2. Let $b_{n}=\frac{n^{2}-1}{n^{2}}=1-\frac{1}{n^{2}}$, for $n=2,3,4, \ldots$. Then,

$$
b_{2}=\frac{3}{4}, b_{3}=\frac{8}{9}, b_{4}=\frac{15}{16}, \ldots
$$

The partial products associated to $\left(b_{n}\right)$ are

$$
p_{2}=b_{2}=\frac{3}{4}, p_{3}=b_{2} b_{3}=\frac{2}{3}, p_{4}=b_{2} b_{3} b_{4}=\frac{5}{8}, \ldots
$$

To determine the $m^{t h}$ partial product we observe that, since $n^{2}-1=(n-1)(n+1)$, we can write

$$
\begin{aligned}
p_{m} & =\frac{(2-1)(2+1)}{2^{2}} \cdot \frac{(3-1)(3+1)}{3^{2}} \cdot \frac{(4-1)(4+1)}{4^{2}} \cdots \cdot \frac{(n-1)(n+1)}{n^{2}} \\
& =\frac{1 \cdot 3}{2^{2}} \cdot \frac{2 \cdot 4}{3^{2}} \cdot \frac{3 \cdot 5}{4^{2}} \cdots \cdots \cdot \frac{(m-2) m}{(m-1)^{2}} \cdot \frac{(m-1)(m+1)}{m^{2}} \\
& =\frac{1}{2} \cdot \frac{m+1}{m}
\end{aligned}
$$

Hence, as $m \rightarrow \infty, p_{m} \rightarrow \frac{1}{2}$. Thus, the sequence of partial products converges to $\frac{1}{2}$ so that

$$
\prod_{n=1}^{\infty}\left(1-\frac{1}{n^{2}}\right)=\frac{1}{2}
$$

