

Calculus II: Fall 2017 THURSDAY OCTOBER 5 EXAMINATION I

READ THE FOLLOWING INSTRUCTIONS CAREFULLY

DO NOT OPEN THIS PACKET UNTIL INSTRUCTED

Instructions:

- Write your name on this exam and any extra sheets you hand in.
- Sign the Honor Code Pledge below.
- You will have 60 minutes to complete this Examination.
- You must attempt Problem 1.
- You must attempt at least three of Problems 2, 3, 4, 5.
- If you attempt all five problems then your final score will be the sum of your score for Problem 1 and the highest possible score obtained from three of the four remaining problems.
- There are 3 blank pages attached for scratchwork.
- Calculators are not permitted.
- Explain your answers clearly and neatly and in complete English sentences.
- State all Theorems you have used from class. To receive full credit you will need to justify each of your calculations and deductions coherently and fully.
- Correct answers without appropriate justification will be treated with great skepticism.

QUESTION 1:	(0/10
QUESTION 2:	ZO /20
QUESTION 3:	20/20
Question 4:	20/20
QUESTION 5:	20/20
TOTAL:	70 /70·

NAME: EVARISTE GALOIS

"I have neither given nor received unauthorized aid on this assignment"

4

- 1. (10 points) True/False. You do not need to justify your solution.
 - (a) Let (a_n) be a sequence. If $|a_n-3|<\frac{1}{100}$, for all natural numbers n, then (a_n) is convergent with limit 3.
 - (b) Let $\sum a_n$ be a series such that $a_n < 0$, for every n. If (a_n) is increasing then $\sum a_n$ is convergent.
 - (c) Let (s_m) be sequence of partial sums associated to the series $\sum a_n$. Suppose that $-\frac{1}{n} \le \frac{s_m}{n} \le 3^{-n}$, for $n = 1, 2, 3, \ldots$ Then, $\sum a_n$ is convergent.
 - (d) The series $\sum_{n=1}^{\infty} \frac{3}{\pi^n}$ is convergent.
 - (e) Let (a_n) be a sequence. Suppose that $|a_n| \le \frac{1}{n}$, for $n = 1, 2, 3, \ldots$ Then, (a_n) is convergent.

Solution:

FALSE

(b) FALSE

(c) FALSE

(d) TRUE

(e) TruE

2

- 2. Determine if the following sequences converge or diverge. If the sequence converges determine the limit. Give a careful explanation of your solution.
 - (a) (10 points)

$$\left(\frac{n^2}{n+1}\right)_{n\geq 1}$$

Let
$$a_n = \frac{n^2}{n+1} = n \cdot \left(\frac{n}{n+1}\right)$$

$$= \frac{1}{(n+1)}$$

$$|n| > 1$$

$$| > 2n = n + n$$

$$| > n + 1$$

$$| > \frac{1}{n+1} > \frac{1}{2}$$

$$\geq n \cdot \frac{1}{2}$$

As
$$\frac{n}{2}$$
 unbounded the same is the

$$\left(\frac{n}{2n^2 + (-1)^n}\right)_{n \ge 1}$$

Let
$$a_n = \frac{n}{2n^2 + (-1)^n}$$
.

As
$$\frac{2n^2 + (-1)^n}{n} > \frac{2n^2 - 1}{n}$$

$$\frac{n}{2n^2-1} > \frac{n}{2n^2+(-1)^n}$$

$$\frac{N}{2n^2-1} > \frac{n}{2n^2+(-1)^n} > 0$$

Since
$$\frac{n}{2n^2-1} = \frac{n^2}{n^2} \cdot \frac{\left(\frac{1}{n}\right)}{2-n^2} \rightarrow \frac{0}{2-0} = 0$$

3. (20 points) Consider the sequence (a_n) , where

$$a_n = \frac{(n+1)!(2n)!}{n!(2n+2)!}, \qquad n=1,2,3,\ldots$$

- (a) Show that (a_n) is a decreasing sequence.
- (b) Determine an upper and lower bound for the sequence (a_n) .
- (c) Explain carefully why the series (a_n) is convergent.
- (d) Determine $\lim_{n\to\infty} a_n$.

Solution:

Let
$$a_n = \frac{(n+1)!(2n)!}{n!(2n+2)!}$$

$$= \frac{n+1}{(2n+1)(2n+2)} = \frac{n+1}{(2n+1)2(n+1)}$$

(a) As
$$2(n+1)+1 = 2n+3 > 2n+1$$

$$=$$
 $a_n = \frac{1}{2n+1} > \frac{1}{2(n+1)+1} = a_{n+1}$

Henre, (an) decreasing.

neasing.

Any upper bound

26

(b) We have: upper bound (e.g.) 1 d

loner bound (e.g.) O Amy lover bound

- (C) A3 (an) decreasing and bounded, by Monotonic + Bounded Theorem, (an) converges.
- (d) We have $a_n = \frac{1}{2} \cdot \frac{1}{2n+1} \Rightarrow \frac{1}{2} \cdot 0 \cdot \frac{1}{2+0}$ $= \frac{1}{2} \cdot \frac{1}{n} \cdot \frac{1}{2+n} \Rightarrow \frac{1}{2} \cdot 0 \cdot \frac{1}{2+0}$

Herre, lim an = 0.

4. (20 points) Determine if the following series is convergent or divergent. If convergent you do not need to determine its limit. Justify your answer carefully.

- 5. Determine whether the following series is absolutely convergent, conditionally convergent or divergent. If convergent you do not need to determine its limit. Justify your answer carefully.
 - (a) (10 points)

$$\sum_{n=1}^{\infty} \frac{3^n}{2^n + 3^n}$$

Solution:

Let
$$a_n = \frac{3^n}{2^n + 3^n} = \frac{3^n}{3^n} \cdot \frac{1}{\left(\frac{2}{3}\right)^n + 1}$$

Test la Divergenne, Ian durerges.

DIVERGENT

(b) (10 points)

$$\sum_{n=1}^{\infty} \frac{2 + (-1)^n}{n^2 + 1}$$

Solution:

Solution:

As
$$\frac{2+(-1)^n}{n^2+1} = \begin{cases} \frac{1}{n^2+1} > 0 & n \text{ odd} \\ \frac{3}{n^2+1} > 0 & n \text{ even} \end{cases}$$
,

the series is absolutely convergent precisely.

When the series is convergent.

Note:
$$\frac{2+(-1)^n}{n^2+1} \le \frac{3}{n^2+1}$$

$$\leq \frac{3}{h^2}$$
,

Sime $\sum_{n=1}^{\infty} \frac{3}{n^2}$ convergent (p-series, p=2), one same is true of $\sum_{n=1}^{\infty} \frac{2+(-1)^n}{n^2+1}$ by DCT.

$$\sum_{n=1}^{\infty} \frac{2+(-1)^n}{n^2+1} \quad \text{by}$$

Herre, series is absolutely convergent.