B Middlebury Calculus II: Fall 2017
S/ College THURSDAY OCTOBER 5
' EXAMINATION I
READ THE FOLLOWING INSTRUCTIONS CAREFULLY

Do NoT oPEN THIS PACKET UNTIL INSTRUCTED
Instructions:
» Write your name on this exam and any extra sheets you hand in.
e Sign the Honor Code Pledge below.
* You will have 60 minutes to complete this Examination.
e You must attempt Problem 1.

* You must attempt at least three of Problems 2,3, 4,5.

e If you attempt all five problems then your final score will be the sum of your score for Problem 1
and the highest possible score obtained from three of the four remaining problems.

* There are 3 blank pages attached for scratchwork.
¢ Calculators are not permitted.
e Explain your answers clearly and neatly and in complete English sentences.

* State all Theorems you have used from class. To receive full credit you will need to justify each of
your calculations and deductions coherently and fully. '

» Correct answers without appropriate Justification will be treated with great skepticism.,

QUESTION 1: [© /10
QUESTION 2: 20 /20
QUESTION 3: 0 /20
QUESTION 4: aQ /20
QUESTION 5: ' 2% /20
TOTAL: 70 /70
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1. (10 points) True/False. You do not need to Justify your solution.
(a) Let (an) be a sequence. If |a, — 8| < 1&5, for all natural numbers n, then (a,) is convergent with
limit 3.
(b) Let ¥ a, be a series such that a,, < 0, for every n. If (a,) is increasing then ¥ a,, is convergent.

(c) Let (sm) be sequence of partial sums associated to the series ¥ a,,. Suppose that —% < fmg3m
forn=1,2,3,.... Then, Y a, is convergent.

(d) The series 302, & is convergent.

(e) Let (an) be a sequence. Suppose that lan] < %, forn=1,2,3,.... Then, (an) is convergent.
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2. Determine if the following sequences converge or diverge. If the sequence converges determine the
limit. Give a careful explanation of your sol '

ution.
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3. (20 points) Consider the sequence (an), where

_ (n+1)I(2n)!

nn+a) 0 PTL2S..

(2) Show that (a,) is a decreasing sequence.
(b) Determine an upper and lower bound for the sequence (a,).

(c) Explain carefully why the series (@) is convergent.
(d) Determine lim,,_,, a,,.
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4. (20 points) Determine if the followin

g series is convergent or divergent. If convergent you do not
need to determine its limit. Justify your answer carefully,
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5. Determine whether the following
gent. If convergent you do not

(a) (10 points)

series is absolutely convergent, conditionally convergent or diver-
need to determine its limit. Justify your answer carefully.
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