Calculus II: Spring 2018
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MAY 4 LECTURE
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IMPROPER INTEGRALS
Type II Improper Integrals

We will consider how to approach determining the area under the graph of a a function that admits
infinite discontinuities.

RECALL: Let f(z) be a nonnegative function, continuous on [a,b) or (b,a] and suppose
limg_,; f(z) = 4+00. Then, z = b is called an infinite discontinuity of f(z).

MATHEMATICAL WORKOUT - FLEX THOSE MUSCLES!

Consider the function f(z) = 2. A portion of the graph of f(z) is shown below
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1. Determine b so that f(z) admits an infinite discontinuity at z = b.
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2. Let a be a real number so that b < a < 5. Determine
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3. Is the area between the graph of f(z) and the z-axis finite or infinite? If finite, what is the
area? If infinite, explain why.
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The above investigation leads us to the following definition.

Type II Improper Integrals

Let f(z) be a nonnegative function. Suppose that z = b is an infinite
discontinuity of f(z).

e Suppose f(z) is continuous on [a,b). If lim; f: f(z)dz exists (and is
finite) then we define
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» Suppose f(z).is continuous on (b, a]. If lim,, [* f(z)dz exists (and is
finite) then we define
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In either case, we say that [~ f(z)dz (esp. ffoo f(z)dz) is a convergent
(improper) integral. Otherwise, the (improper) integral is divergent.

Remark: An integral fab f(z)dz defined over an interval [a,b] on which f(z) admits an infinite
discontinuity is called a type II improper integral. It is not an integral in the usual sense (i.e.
it is not defined as the limit of Riemann sums).

Example:

1. Consider the improper integral
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Since the integrand ﬁl—? admits an infinite discontinuity at .= '  the integral is a

type II improper integral. Hence, by definition +
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Hence, the improper integral is W
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2. Consider the function f(z) = —L-. There exists an infinite discontinuity of f(z) at z = 2.
Then, the integral
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is improper. Moreover, by definition

Hence, the improper integral is divergent.

The Integral Test for Series
Let >°~°  a, be a series of positive terms, a, > 0. Suppose that a, = f(n), for a continuous
function f(z) defined for 1 < z < co. Furthermore, assume that f(z) is a monotone decreasing
function: this means that if £ < y then f(z) > f ().

CHECK YOUR UNDERSTANDING
Draw the general shape of the graph of a monotone decreasing function.
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For example, the p-series, p > 0,

is such a series.
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We can use the graph of f(z) to visualise the series Y omeq Gt
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In particular,
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This leads to the following new test for convergence of series.

Integral Convergence Test for Series

Let >, a, be a series of positive terms such that a, = f(n), where f(z) is
a positive, continuous, monotone decreasing function defined on 1 < z < co.
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Example: We can use the integral test to give a quick and easy proof of the divergence of the
Harmonic Series. Let f(z) = 1. We saw in the last lecture that
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is divergent. Therefore, the series ) 2 - is divergent.




