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Improper Integrals

Type II Improper Integrals
We will consider how to approach determining the area under the graph of a a function that admits
infinite discontinuities.

Recall: Let f(x) be a nonnegative function, continuous on [a, b) or (b, a] and suppose
limx→b f(x) = +∞. Then, x = b is called an infinite discontinuity of f(x).

Mathematical workout - flex those muscles!
Consider the function f(x) = 1√

x−2 . A portion of the graph of f(x) is shown below

x

y

x = b

1. Determine b so that f(x) admits an infinite discontinuity at x = b.

2. Let a be a real number so that b < a < 5. Determine∫ 5

a

1√
x− 2

dx
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3. Is the area between the graph of f(x) and the x-axis finite or infinite? If finite, what is the
area? If infinite, explain why.

The above investigation leads us to the following definition.

Type II Improper Integrals

Let f(x) be a nonnegative function. Suppose that x = b is an infinite
discontinuity of f(x).

• Suppose f(x) is continuous on [a, b). If limt→b

∫ t

a
f(x)dx exists (and is

finite) then we define ∫ b

a

f(x)dx
def
= lim

t→b

∫ t

a

f(x)dx

• Suppose f(x) is continuous on (b, a]. If limt→b

∫ a

t
f(x)dx exists (and is

finite) then we define ∫ a

b

f(x)dx
def
= lim

t→b

∫ b

t

f(x)dx

In either case, we say that
∫∞
a

f(x)dx (resp.
∫ b

−∞ f(x)dx) is a convergent
(improper) integral. Otherwise, the (improper) integral is divergent.

Remark: An integral
∫ b

a
f(x)dx defined over an interval [a, b] on which f(x) admits an infinite

discontinuity is called a type II improper integral. It is not an integral in the usual sense (i.e.
it is not defined as the limit of Riemann sums).

Example:

1. Consider the improper integral ∫ 1

0

1√
1− x2

dx
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Since the integrand 1√
1−x2 admits an infinite discontinuity at the integral is a

type II improper integral. Hence, by definition∫ 1

0

1√
1− x2

dx =

=

Hence, the improper integral is .

2. Consider the function f(x) = 1
x−2 . There exists an infinite discontinuity of f(x) at x = 2.

Then, the integral ∫ 2

0

1

x− 2
dx

is improper. Moreover, by definition∫ 5

2

1

x− 2
dx = lim

t→2

∫ 5

2

1

x− 2
dx = lim

t→2
[log(x− 2)]5t = lim

t→2
(log(3)− log(t− 2)) = +∞

Hence, the improper integral is divergent.

The Integral Test for Series
Let

∑∞
n=1 an be a series of positive terms, an ≥ 0. Suppose that an = f(n), for a continuous

function f(x) defined for 1 ≤ x <∞. Furthermore, assume that f(x) is a monotone decreasing
function: this means that if x ≤ y then f(x) ≥ f(y).

Check your understanding
Draw the general shape of the graph of a monotone decreasing function.

For example, the p-series, p > 0,
∞∑
n=1

1

np

is such a series.

We can use the graph of f(x) to visualise the series
∑∞

n=1 an:
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In particular,

∑∞
n=2 an whenever

This leads to the following new test for convergence of series.

Integral Convergence Test for Series

Let
∑∞

n=1 an be a series of positive terms such that an = f(n), where f(x) is
a positive, continuous, monotone decreasing function defined on 1 ≤ x <∞.

•
∑∞

n=1 an converges whenever

is

•
∑∞

n=1 an diverges whenever

is

Example: We can use the integral test to give a quick and easy proof of the divergence of the
Harmonic Series. Let f(x) = 1

x
. We saw in the last lecture that∫ ∞

1

1

x
dx

is divergent. Therefore, the series
∑∞

n=1
1
n

is divergent.
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