

Calculus II: Spring 2018

Contact: gmelvin@middlebury.edu

May 4 Lecture

SUPPLEMENTARY REFERENCES:

- Single Variable Calculus, Stewart, 7th Ed.: Section 7.8.
- Calculus II, Marsden, Weinstein: Chapter 11.3.
- AP Calculus BC, Khan Academy: Improper Integrals.

KEYWORDS: improper integrals, the Integral Test

IMPROPER INTEGRALS

Type II Improper Integrals

We will consider how to approach determining the area under the graph of a a function that admits infinite discontinuities.

Recall: Let f(x) be a nonnegative function, continuous on [a,b) or (b,a] and suppose $\lim_{x\to b} f(x) = +\infty$. Then, x=b is called an **infinite discontinuity of** f(x).

MATHEMATICAL WORKOUT - FLEX THOSE MUSCLES!

Consider the function $f(x) = \frac{1}{\sqrt{x-2}}$. A portion of the graph of f(x) is shown below

- 1. Determine b so that f(x) admits an infinite discontinuity at x = b.
- 2. Let a be a real number so that b < a < 5. Determine

$$\int_{a}^{5} \frac{1}{\sqrt{x-2}} dx$$

3. Is the area between the graph of f(x) and the x-axis finite or infinite? If finite, what is the area? If infinite, explain why.

The above investigation leads us to the following definition.

Type II Improper Integrals

Let f(x) be a nonnegative function. Suppose that x = b is an infinite discontinuity of f(x).

• Suppose f(x) is continuous on [a,b). If $\lim_{t\to b} \int_a^t f(x)dx$ exists (and is finite) then we define

$$\int_{a}^{b} f(x)dx \stackrel{def}{=} \lim_{t \to b} \int_{a}^{t} f(x)dx$$

• Suppose f(x) is continuous on (b, a]. If $\lim_{t\to b} \int_t^a f(x)dx$ exists (and is finite) then we define

$$\int_{b}^{a} f(x)dx \stackrel{def}{=} \lim_{t \to b} \int_{t}^{b} f(x)dx$$

In either case, we say that $\int_a^\infty f(x)dx$ (resp. $\int_{-\infty}^b f(x)dx$) is a **convergent** (improper) integral. Otherwise, the (improper) integral is **divergent**.

Remark: An integral $\int_a^b f(x)dx$ defined over an interval [a,b] on which f(x) admits an infinite discontinuity is called a **type II improper integral**. It is not an integral in the usual sense (i.e. it is not defined as the limit of Riemann sums).

Example:

1. Consider the improper integral

$$\int_0^1 \frac{1}{\sqrt{1-x^2}} dx$$

Since the integrand $\frac{1}{\sqrt{1-x^2}}$ admits an infinite discontinuity at _____ the integral is a type II improper integral. Hence, by definition

$$\int_0^1 \frac{1}{\sqrt{1 - x^2}} dx = \underline{\hspace{1cm}}$$

= _____

Hence, the improper integral is ______.

2. Consider the function $f(x) = \frac{1}{x-2}$. There exists an infinite discontinuity of f(x) at x = 2. Then, the integral

$$\int_0^2 \frac{1}{x-2} dx$$

is improper. Moreover, by definition

$$\int_{2}^{5} \frac{1}{x - 2} dx = \lim_{t \to 2} \int_{2}^{5} \frac{1}{x - 2} dx = \lim_{t \to 2} \left[\log(x - 2) \right]_{t}^{5} = \lim_{t \to 2} \left(\log(3) - \log(t - 2) \right) = +\infty$$

Hence, the improper integral is divergent.

The Integral Test for Series

Let $\sum_{n=1}^{\infty} a_n$ be a series of positive terms, $a_n \geq 0$. Suppose that $a_n = f(n)$, for a continuous function f(x) defined for $1 \leq x < \infty$. Furthermore, assume that f(x) is a **monotone decreasing function**: this means that if $x \leq y$ then $f(x) \geq f(y)$.

CHECK YOUR UNDERSTANDING

Draw the general shape of the graph of a monotone decreasing function.

For example, the *p*-series, p > 0,

$$\sum_{n=1}^{\infty} \frac{1}{n^p}$$

is such a series.

We can use the graph of f(x) to **visualise** the series $\sum_{n=1}^{\infty} a_n$:

In particular,

$$\sum_{n=2}^{\infty} a_n$$
 _____ whenever _____

This leads to the following new test for convergence of series.

Integral Convergence Test for Series

Let $\sum_{n=1}^{\infty} a_n$ be a series of positive terms such that $a_n = f(n)$, where f(x) is a positive, continuous, monotone decreasing function defined on $1 \le x < \infty$.

• $\sum_{n=1}^{\infty} a_n$ converges whenever

is

• $\sum_{n=1}^{\infty} a_n$ diverges whenever

is _____

Example: We can use the integral test to give a quick and easy proof of the divergence of the Harmonic Series. Let $f(x) = \frac{1}{x}$. We saw in the last lecture that

$$\int_{1}^{\infty} \frac{1}{x} dx$$

is divergent. Therefore, the series $\sum_{n=1}^{\infty}\frac{1}{n}$ is divergent.