Calculus II: Spring 2018

Contact: gmelvin@middlebury.edu

May 4 Lecture

Supplementary References:

- Single Variable Calculus, Stewart, 7th Ed.: Section 7.8.
- Calculus II, Marsden, Weinstein: Chapter 11.3.
- AP Calculus BC, Khan Academy: Improper Integrals.

Keywords: improper integrals, the Integral Test

IMPROPER INTEGRALS

Type II Improper Integrals

We will consider how to approach determining the area under the graph of a a function that admits infinite discontinuities.

Recall: Let $f(x)$ be a nonnegative function, continuous on $[a, b)$ or $(b, a]$ and suppose $\lim _{x \rightarrow b} f(x)=+\infty$. Then, $x=b$ is called an infinite discontinuity of $f(x)$.
Mathematical workout - Flex those muscles!
Consider the function $f(x)=\frac{1}{\sqrt{x-2}}$. A portion of the graph of $f(x)$ is shown below

1. Determine b so that $f(x)$ admits an infinite discontinuity at $x=b$.
2. Let a be a real number so that $b<a<5$. Determine

$$
\int_{a}^{5} \frac{1}{\sqrt{x-2}} d x
$$

3. Is the area between the graph of $f(x)$ and the x-axis finite or infinite? If finite, what is the area? If infinite, explain why.

The above investigation leads us to the following definition.

Type II Improper Integrals

Let $f(x)$ be a nonnegative function. Suppose that $x=b$ is an infinite discontinuity of $f(x)$.

- Suppose $f(x)$ is continuous on $[a, b)$. If $\lim _{t \rightarrow b} \int_{a}^{t} f(x) d x$ exists (and is finite) then we define

$$
\int_{a}^{b} f(x) d x \stackrel{\text { def }}{=} \lim _{t \rightarrow b} \int_{a}^{t} f(x) d x
$$

- Suppose $f(x)$ is continuous on $(b, a]$. If $\lim _{t \rightarrow b} \int_{t}^{a} f(x) d x$ exists (and is finite) then we define

$$
\int_{b}^{a} f(x) d x \stackrel{\text { def }}{=} \lim _{t \rightarrow b} \int_{t}^{b} f(x) d x
$$

In either case, we say that $\int_{a}^{\infty} f(x) d x$ (resp. $\left.\int_{-\infty}^{b} f(x) d x\right)$ is a convergent (improper) integral. Otherwise, the (improper) integral is divergent.

Remark: An integral $\int_{a}^{b} f(x) d x$ defined over an interval $[a, b]$ on which $f(x)$ admits an infinite discontinuity is called a type II improper integral. It is not an integral in the usual sense (i.e. it is not defined as the limit of Riemann sums).

Example:

1. Consider the improper integral

$$
\int_{0}^{1} \frac{1}{\sqrt{1-x^{2}}} d x
$$

Since the integrand $\frac{1}{\sqrt{1-x^{2}}}$ admits an infinite discontinuity at \qquad the integral is a type II improper integral. Hence, by definition

$$
\begin{aligned}
& \int_{0}^{1} \frac{1}{\sqrt{1-x^{2}}} d x= \\
& \quad=
\end{aligned}
$$

Hence, the improper integral is \qquad .
2. Consider the function $f(x)=\frac{1}{x-2}$. There exists an infinite discontinuity of $f(x)$ at $x=2$. Then, the integral

$$
\int_{0}^{2} \frac{1}{x-2} d x
$$

is improper. Moreover, by definition

$$
\int_{2}^{5} \frac{1}{x-2} d x=\lim _{t \rightarrow 2} \int_{2}^{5} \frac{1}{x-2} d x=\lim _{t \rightarrow 2}[\log (x-2)]_{t}^{5}=\lim _{t \rightarrow 2}(\log (3)-\log (t-2))=+\infty
$$

Hence, the improper integral is divergent.

The Integral Test for Series

Let $\sum_{n=1}^{\infty} a_{n}$ be a series of positive terms, $a_{n} \geq 0$. Suppose that $a_{n}=f(n)$, for a continuous function $f(x)$ defined for $1 \leq x<\infty$. Furthermore, assume that $f(x)$ is a monotone decreasing function: this means that if $x \leq y$ then $f(x) \geq f(y)$.

Check your understanding

Draw the general shape of the graph of a monotone decreasing function.

For example, the p-series, $p>0$,

$$
\sum_{n=1}^{\infty} \frac{1}{n^{p}}
$$

is such a series.
We can use the graph of $f(x)$ to visualise the series $\sum_{n=1}^{\infty} a_{n}$:

In particular,

$$
\sum_{n=2}^{\infty} a_{n}
$$

\qquad whenever \qquad

This leads to the following new test for convergence of series.

Integral Convergence Test for Series

Let $\sum_{n=1}^{\infty} a_{n}$ be a series of positive terms such that $a_{n}=f(n)$, where $f(x)$ is a positive, continuous, monotone decreasing function defined on $1 \leq x<\infty$.

- $\sum_{n=1}^{\infty} a_{n}$ converges whenever
is \qquad
- $\sum_{n=1}^{\infty} a_{n}$ diverges whenever
is \qquad
Example: We can use the integral test to give a quick and easy proof of the divergence of the Harmonic Series. Let $f(x)=\frac{1}{x}$. We saw in the last lecture that

$$
\int_{1}^{\infty} \frac{1}{x} d x
$$

is divergent. Therefore, the series $\sum_{n=1}^{\infty} \frac{1}{n}$ is divergent.

