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- Calculus, Spivak, 3rd Ed.: Section 23.
- AP Calculus BC, Khan Academy: Ratio & alternating series tests.
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Absolute & conditional convergence
Recall: the alternating series ∑

∞
n=1

(−1)n
n is convergent while the series ∑

∞
n=1

1
n is divergent.

Let ∑an be a series. If the series ∑ ∣an∣ is convergent then we say that the original series ∑an is
absolutely convergent. If a series ∑an is convergent but not absolutely convergent then we say
that ∑an is conditionally convergent.

Check your understanding
Which of the following series are absolutely convergent, conditionally convergent, neither.

1. ∑
∞
n=1

(−1)n−1
n2

2. ∑
∞
n=1

(−3)n
2n+3n

3. ∑
∞
n=1(−1)n−1

1√
n+1+√n
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Absolute convergence has the following useful consequence.

Absolute convergence implies convergence

If a series ∑an is absolutely convergent then it is convergent.

Proof: If ∑an is absolutely convergent then ∑ ∣an∣ is convergent and the same is true of the series

∑2∣an∣.

Observation: For any real number x, 0 ≤ x + ∣x∣ ≤ 2∣x∣, (since ∣x∣ is either x or −x).

Hence, applying the DCT we see that ∑(an + ∣an∣) is convergent. Now,

∑an =∑(an + ∣an∣) −∑ ∣an∣

is a difference of two convergent series, and therefore convergent.

Example:

1. Consider the series ∑
∞
n=1

sin(n)
n2 . Then,

∣
sin(n)

n2
∣ ≤

1

n2
.

Hence, by the DCT the series ∑ ∣
sin(n)
n2 ∣ is convergent. Thus, the series ∑

sin(n)
n2 is absolutely

convergent, hence convergent.

2. Consider the series ∑
∞
n=1(−1)n−1

n+3
2n3+5n−1 . Then,

∣(−1)n−1
n + 3

2n3 + 5n − 1
∣ =

n + 3

2n3 + 5n − 1

The series ∑
∞
n=1

n+3
2n3+5n−1 is convergent by the LCT. Hence, the series ∑

∞
n=1(−1)n−1

n+3
2n3+5n−1 is

absolutely convergent, hence convergent.

Warning! Conditionally convergent series provide demonstrations of some of the weird
things that can happen with series if we consider them as *infinite sums* (which they are not).
For example, the series

∞
∑
n=1

(−1)n+1

n

is conditionally convergent with limit L. Now, suppose that we consider this series as an *infinite
sum*, and write

L = 1 −
1

2
+

1

3
−

1

4
+

1

5
−

1

6
+

1

7
−

1

8
. . . (A)

Then,
L

2
=

1

2
−

1

4
+

1

6
− . . .

whe we can rewrite as

L

2
= (B)
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Now, we add (A) + (B)

L = 1 −
1

2
+

1

3
−

1

4
+

1

5
−

1

6
+

1

7
−

1

8
+ . . . (A)

L

2
= (B)

to get
3L

2
=

It’s not too difficult to show that this last infinite series contains the same terms as (A), but
rearranged so that one negative term occurs after two positive terms. Hence, L = 3L

2 Ô⇒ L = 0,
which contradicts the fact that 1

2 = s2 ≤ L ≤ s1 = 1...!

The problem here is the process of rearrangement: for finite sums we are free to rearrange terms
however we please (in fancy algebraic language, addition is commutative). However, as we’ve just
demonstrated, we must be careful when attempting to rearrange the terms of a (infinite) series.

The situation for absolutely convergent series is much more straightforward:

Let ∑an be an absolutely convergent series. If (bn) is a rearrangement of the
terms of the sequence (an) (so that (bn) has the terms as (an) but listed in a
different order) then ∑ bn = ∑an.

Remark: Bernhard Riemann (1820-1866), one of history’s most celebrated mathematicians,
proved the following remarkable result.

Riemann Rearrangement Theorem

Let ∑an be an absolutely convergent series. If (bn) is a rearrangement of the
terms of the sequence (an) (so that (bn) has the terms as (an) but listed in a
different order) then ∑ bn = ∑an.

For example, this Theorem states that there is a rearrangement (bn) of

(
(−1)n+1

n
) = (1,−

1

2
,
1

3
,−

1

4
, . . .)

so that
∞
∑
n=1

bn = 101010
1010
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