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Convergence Tests for Series IV

Today we consider the Limit Comparison Test for series. This is a test for
convergence of a series of positive terms.

At the end of yesterday we saw that we couldn’t apply the Direct Comparison Test
and compare the series

∞
∑
n=1

1

2n − 1

with the convergent geometric series

∞
∑
n=1

1

2n

The series ∑
∞
n=1

1
2n−1 ‘looks like’ the convergent series ∑

∞
n=1

1
2n and it seems entirely

reasonable to expect that the convergence behaviour of these series should coincide.
In order to show this, we had to use the following magic formula (which we can’t yet
prove is true)

1

2n − 1
≤

3

2n
, for n = 1,2,3, . . .

Then, since the series ∑
∞
n=1

3
2n is convergent (Geometric Series Theorem), we can

apply the Direct Comparison Test to deduce that ∑
∞
n=1

1
2n−1 is convergent.

The following test for convergence formalises this notion of comparing series with
unknown convergence behaviour with similar looking convergent series.

Limit Comparison Test (LCT)

Suppose that ∑an and ∑ bn are series with positive terms. If the sequence
(an
bn
) is convergent and

lim
n→∞

an
bn

= c > 0,

then either both series converge or both series diverge.
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Example:

1. Consider the series ∑
∞
n=1

1√
n+2 . As n gets very large the terms of the series begin

to look like 1√
n

(i.e. for n very large,
√
n + 2 is approximately

√
n).

The series ∑
∞
n=1

1√
n

is a p-series with p = 1
2 , and therefore divergent. It seems

reasonable to expect that the series ∑
∞
n=1

1√
n+2 is also divergent. However, since

< , for n = 1,2,3, . . .

we can’t apply the to show that ∑
∞
n=1

1√
n+2 is divergent.

However, if we let bn =
1√
n+2 and an =

1√
n

then

an
bn

=

√
n + 2
√
n

=

√
n(1 + 2/n)
√
n

=
√

1 + 2/nÐ→
√

1 + 0 = 1, as n→∞

Hence, since limn→∞ an
bn

= 1 > 0 and the series ∑
∞
n=1

1√
n

is divergent (p-series with

p = 1
2), the series ∑

∞
n=1

1√
n+2 is also divergent, by the Limit Comparison Test.

2. Let an =
1
2n , bn =

1
2n−1 . Then,

an
bn

=
2n − 1

2n
= 1 −

1

2n
Ð→ 1 − 0 = 1, as n→∞.

Hence, since limn→∞ an
bn

= 1 > 0 and the series ∑
∞
n=1

1
2n is convergent (Geometric

Series Theorem), the series ∑
∞
n=1

1
2n−1 is also convergent, by the Limit Compar-

ison Test.

Flex those mathematical muscles!
Use the Limit Comparison Test to determine whether the following series converge or
diverge. You will need to come up with a series of postive terms whose convergence
behaviour you know to compare

1. ∞
∑
n=1

1
√
n2 + 1
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2. ∞
∑
n=1

n − 1

n2
√
n

3. ∞
∑
n=1

9n

10n − 4

4. Explain why you can’t use the Limit Comparison Test to determine convergence
of ∞

∑
n=1

2 − sin(n)

n6 + n + 1

by comparing with ∑n
1
n6 .
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Appendix: In this Appendix we provide a proof of the Limit Comparison Test.
Let (an) and (bn) be sequences of positive terms. Suppose that (anbn ) is convergent

and limn→∞ an
bn

= c > 0. Hence, for ε = c
2 we can find N so that

n ≥ N Ô⇒ ∣
an
bn

− c∣ < c2

That is, for n ≥ N we have

c

2
= c −

c

2
<
an
bn

<
3c

2
= c +

c

2

Hence, since bn > 0, we can rewrite this inequality as

c

2
bn < an <

3c

2
bn

Hence,

• if ∑
∞
n=N bn is divergent so is ∑

∞
n=N an, using the left inequality and DCT. Hence,

∑
∞
n=1 an = ∑

N−1
n=1 an +∑

∞
n=N an is also divergent.

• if ∑
∞
n=N bn is convergent then so is ∑

∞
n=N an, using the right inequality and DCT.

Hence, ∑
∞
n=1 an∑

N−1
n=1 an +∑

∞
n=N an is also convergent.
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