

$Contact: \verb"gmelvin@middlebury.edu"$

MARCH 22 LECTURE

SUPPLEMENTARY REFERENCES:

- Single Variable Calculus, Stewart, 7th Ed.: Section 6.1, 6.2*, 6.3*, 6.6.
- Calculus, Spivak, 3rd Ed.: Section 18.

KEYWORDS: chain rule, natural logarithm

THE NATURAL LOGARITHM II & INVERSE TRIGONOMETRIC FUNCTIONS

We saw yesterday that the exponential function $\exp(x)$ admits an inverse function $\exp^{-1}(x)$. We also determined that

$$\frac{d}{dx}\exp^{-1}(x) = \frac{1}{x} \tag{(*)}$$

A Fundamental Interlude

Let f(x) be a function. An **antiderivative** of f(x) is a differentiable function F(x) satisfying

$$\frac{d}{dx}F(x) = f(x).$$

Proposition: If F(x) and G(x) are antiderivatives of f(x) then

$$F(x) = G(x) + c,$$

for some constant c.

The most important Theorem you saw in Calculus I was an approach to determining the antiderivative of a continuous function.

Fundamental Theorem of Calculus

Let f(x) be a continuous function defined on the closed interval $a \le x \le b$. Then, the function

$$F(x) = \int_{a}^{x} f(u) du$$

is an antiderivative of f(x).

The natural logarithm

We can restate (*) as follows:

 $\exp^{-1}(x)$ is an antiderivative of $g(x) = \frac{1}{x}$.

We define the **natural logarithm function** to be the function

$$\ln(x) = \int_1^x \frac{dt}{t} \quad x > 0$$

By the Fundamental Theorem of Calculus, $\ln(x)$ is an antiderivative of $g(x) = \frac{1}{x}$. Hence, the Proposition implies that there is a constant c so that

 $\exp^{-1}(x) = \underline{\qquad}$

Since $\exp(0) =$ ____, we have _____. Hence,

Hence,

The **natural logarithm function** $\ln(x)$ defined above *is* the inverse function $\exp^{-1}(x)$,

$$\ln(x) = \exp^{-1}(x)$$

Remark:

- 1. You will show in Homework that the function $\ln(x)$ just defined as the inverse of $\exp(x)$ satisfies the expected logarithm rules:
 - ln(xy) = ln(x) + ln(y), for every x, y > 0.
 ln(xⁿ) = n ln(x), for every x > 0 and natural number n.
- 2. As the inverse function of $\exp(x)$, the following functional relationships hold:

3. We have claimed that

 $\exp(x) = e^x$, where $e = \exp(1)$ is Euler's number.

Hence, we see that $\ln(x) = \log_e(x)$ is the logarithm base e function.

Inverse Trigonometric Functions

We are going to provide a similar analysis to determine **inverse trigonometric functions**. CHECK YOUR UNDERSTANDING

1. Let $f(x) = \sin(x)$. Draw the graph of f(x).

2. Explain why f(x) is not one-to-one.

(Recall: f(x) is one-to-one if distinct inputs give distinct outputs)

- 3. Determine a domain $A : a \le x \le b$ on which f(x) is one-to-one.
- 4. What is the range B of f(x) when the inputs are restricted to A?
- 5. Explain why an inverse function $f^{-1}(y)$ to f(x) exists, when we restrict to domain A.
- 6. Draw the graph of $f^{-1}(y)$

Definition: Consider the function $f(x) = \sin(x)$, with domain $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$. Then, f(x) is one-to-one and we call its inverse function $f^{-1}(y)$ the **inverse sine function**, which we denote $\arcsin(y)$.

CHECK YOUR UNDERSTANDING

Complete the following statement:

•	the domain of $\arcsin(y)$ is
•	the range of $\arcsin(y)$ is

Remark:

- 1. We write $\arcsin(y)$ instead of $\sin^{-1}(y)$ to avoid confusion with the common notation $\sin^k(x) = (\sin(x))^k$.
- 2. As the inverse function of sin(x), the following functional relationship holds:

3. In words:

" $\operatorname{arcsin}(y)$ is the arc whose sine is y"

This is demonstrated by the following diagram: (recall that, the length of the arc drawn below is x, whenever the angle x is measured in radians)

Since $f(x) = \sin(x)$ is a differentiable function the same is true of $\arcsin(y)$. Using the formula for the derivative of an inverse function

$$\frac{d}{dy}f^{-1}(y) = \frac{1}{f'(f^{-1}(y))}$$

we have

$$\frac{d}{dy} \arcsin(y) = _$$

Here we have used that the derivative of sin is cos, and used the above triangle to show that $\cos(\arcsin(y)) =$ _____. Hence,

```
\arcsin(x) is an antiderivative of _____
```

Exercise: determine the derivative of $\arctan(x)$ following a similar approach as above.