Middlebury
College

Calculus II: Spring 2018

Contact: gmelvin@middlebury.edu

March 22 Lecture

Supplementary References:

- Single Variable Calculus, Stewart, 7th Ed.: Section 6.1, 6.2*, 6.3*,6.6.
- Calculus, Spivak, 3rd Ed.: Section 18.

KEYWORDS: chain rule, natural logarithm

The Natural Logarithm II \& Inverse Trigonometric Functions

We saw yesterday that the exponential function $\exp (x)$ admits an inverse function $\exp ^{-1}(x)$. We also determined that

$$
\begin{equation*}
\frac{d}{d x} \exp ^{-1}(x)=\frac{1}{x} \tag{*}
\end{equation*}
$$

A Fundamental Interlude

Let $f(x)$ be a function. An antiderivative of $f(x)$ is a differentiable function $F(x)$ satisfying

$$
\frac{d}{d x} F(x)=f(x)
$$

Proposition: If $F(x)$ and $G(x)$ are antiderivatives of $f(x)$ then

$$
F(x)=G(x)+c,
$$

for some constant c.
The most important Theorem you saw in Calculus I was an approach to determining the antiderivative of a continuous function.

Fundamental Theorem of Calculus

Let $f(x)$ be a continuous function defined on the closed interval $a \leq x \leq b$. Then, the function

$$
F(x)=\int_{a}^{x} f(u) d u
$$

is an antiderivative of $f(x)$.

The natural logarithm

We can restate (*) as follows:
$\exp ^{-1}(x)$ is an antiderivative of $g(x)=\frac{1}{x}$.

We define the natural logarithm function to be the function

$$
\ln (x)=\int_{1}^{x} \frac{d t}{t} \quad x>0
$$

By the Fundamental Theorem of Calculus, $\ln (x)$ is an antiderivative of $g(x)=\frac{1}{x}$. Hence, the Proposition implies that there is a constant c so that

$$
\exp ^{-1}(x)=
$$

Since $\exp (0)=$ \qquad , we have \qquad . Hence,
\qquad
Hence,
The natural logarithm function $\ln (x)$ defined above is the inverse function $\exp ^{-1}(x)$,

$$
\ln (x)=\exp ^{-1}(x)
$$

Remark:

1. You will show in Homework that the function $\ln (x)$ just defined as the inverse of $\exp (x)$ satisfies the expected logarithm rules:

- $\ln (x y)=\ln (x)+\ln (y)$, for every $x, y>0$.
- $\ln \left(x^{n}\right)=n \ln (x)$, for every $x>0$ and natural number n.

2. As the inverse function of $\exp (x)$, the following functional relationships hold:

\bullet	$\exp (\ln (y))=y, \quad$ for every $y>0$,
\bullet	$\ln (\exp (x))=x, \quad$ for every x.

3. We have claimed that

$$
\exp (x)=e^{x}, \quad \text { where } e=\exp (1) \text { is Euler's number. }
$$

Hence, we see that $\ln (x)=\log _{e}(x)$ is the logarithm base e function.

Inverse Trigonometric Functions

We are going to provide a similar analysis to determine inverse trigonometric functions.
Check your understanding

1. Let $f(x)=\sin (x)$. Draw the graph of $f(x)$.

2. Explain why $f(x)$ is not one-to-one.
(Recall: $f(x)$ is one-to-one if distinct inputs give distinct outputs)
3. Determine a domain A : $a \leq x \leq b$ on which $f(x)$ is one-to-one.
4. What is the range B of $f(x)$ when the inputs are restricted to A ?
5. Explain why an inverse function $f^{-1}(y)$ to $f(x)$ exists, when we restrict to domain A.
6. Draw the graph of $f^{-1}(y)$

Definition: Consider the function $f(x)=\sin (x)$, with domain $-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}$. Then, $f(x)$ is one-to-one and we call its inverse function $f^{-1}(y)$ the inverse sine function, which we denote $\arcsin (y)$.

Check your understanding

Complete the following statement:

- the domain of $\arcsin (y)$ is \qquad
- the range of $\arcsin (y)$ is \qquad

Remark:

1. We write $\arcsin (y)$ instead of $\sin ^{-1}(y)$ to avoid confusion with the common notation $\sin ^{k}(x)=$ $(\sin (x))^{k}$.
2. As the inverse function of $\sin (x)$, the following functional relationship holds:

- $\sin (\arcsin (y))=y, \quad$ for every \qquad ,
- $\arcsin (\sin (x))=x, \quad$ for every \qquad .

3. In words:
"arcsin (y) is the arc whose sine is y "

This is demonstrated by the following diagram: (recall that, the length of the arc drawn below is x, whenever the angle x is measured in radians)

Since $f(x)=\sin (x)$ is a differentiable function the same is true of $\arcsin (y)$. Using the formula for the derivative of an inverse function

$$
\frac{d}{d y} f^{-1}(y)=\frac{1}{f^{\prime}\left(f^{-1}(y)\right)}
$$

we have

$$
\frac{d}{d y} \arcsin (y)=
$$

Here we have used that the derivative of sin is cos, and used the above triangle to show that $\cos (\arcsin (y))=$ \qquad . Hence,
$\arcsin (x)$ is an antiderivative of \qquad
Exercise: determine the derivative of $\arctan (x)$ following a similar approach as above.

