Calculus II: Spring 2018

Contact: gmelvin@middlebury.edu

March 21 Lecture

Supplementary References:

- Single Variable Calculus, Stewart, 7th Ed.: Section 6.1, 6.2*, 6.3*.
- Calculus, Spivak, 3rd Ed.: Section 18.

KEYWORDS: chain rule, natural logarithm

The Natural Logarithm I

Today we introduce the natural logarithm function as the inverse function of $\exp (x)$.
Let $f(x)$ be a one-to-one function with domain A and range B. Then, its inverse function f^{-1} has domain B and range A and is defined by

$$
f^{-1}(y)=x \quad \Leftrightarrow \quad y=f(x)
$$

In words,

If $y=f(x)$ is an output of f then y is an input of f^{-1} and $f^{-1}(y)=x$.

Example:

1. Let $f(x)=1-\frac{1}{x}$ with domain A being the collection of all real numbers $x>0$. The range of f, B, is the collection of all real numbers $y<1$. The function $f(x)$ is one-to-one and its inverse function is

$$
f^{-1}(y)=\frac{1}{1-y}, \quad y<1
$$

2. Let $f(x)=2 x^{2}-1, x \geq 0$. Then, $f^{-1}(y)=\sqrt{\frac{y+1}{2}}, y \geq-1$.

Important Remarks:

1. To determine the inverse function $f^{-1}(y)$ of a one-to-one function $f(x)$, solve the equation

$$
y=f(x)
$$

for x in terms of y.
2. It is important to remember that $f^{-1}(y) \neq \frac{1}{f(y)}$, in general. For example, if $f(x)=1-\frac{1}{x}$ then

$$
\frac{1}{f(y)}=\frac{y}{y-1} \neq \frac{1}{1-y}=f^{-1}(y)
$$

3. Let $f(x)$ be a one-to-one function with domain A and range B. Then, f and its inverse function f^{-1} satisfy the following functional relationship:

$$
\begin{array}{ll}
f\left(f^{-1}(y)\right)=y, & \text { for every } y \text { in } B \\
f^{-1}(f(x))=x, & \text { for every } x \text { in } A .
\end{array}
$$

The derivative of inverse functions

Let $f(x)$ be a one-to-one function with domain A and range B. Then, f and its inverse function f^{-1} satisfy the following functional relationship:

$$
\begin{align*}
& f\left(f^{-1}(y)\right)=y, \quad \text { for every } y \text { in } B \tag{*}\\
& f^{-1}(f(x))=x, \quad \text { for every } x \text { in } A .
\end{align*}
$$

If $f(x)$ is also a differentiable function (i.e. the derivative $f^{\prime}(x)$ exists for every x in A) then its inverse function is also differentiable. In fact, the derivative of $f^{-1}(y)$ can be determined in terms of the derivative of $f^{\prime}(x)$.

First, we recall some results from Calculus I.

Check your understanding

Compute $\frac{d y}{d x}$ where

$$
y=x^{2}+4 x+\frac{1}{x^{2}+4 x}
$$

Chain Rule

Let f and g be differentiable functions. Then,

$$
\frac{d}{d x} f(g(x))=f^{\prime}(g(x)) \cdot g^{\prime}(x)
$$

Example: Let $f(x)=x+\frac{1}{x}$ and $g(x)=x^{2}+4 x$. We have

$$
f^{\prime}(x)=1-\frac{1}{x^{2}}, \quad g^{\prime}(x)=2 x+4
$$

Then, the chain rule states that

$$
\frac{d}{d x}\left(x^{2}+4 x+\frac{1}{x^{2}+4 x}\right)=\frac{d}{d x} f(g(x))=f^{\prime}\left(x^{2}+4 x\right) \cdot g^{\prime}(x)=\left(1-\frac{1}{\left(x^{2}+4 x\right)^{2}}\right)(2 x+4)
$$

You can check that this agrees with your calculation above.
Check your understanding
Recall the function $f(x)=1-\frac{1}{x}$ from October 11 Lecture. We determined the inverse function to be

$$
f^{-1}(y)=\frac{1}{1-y}
$$

1. Compute

$$
\frac{d}{d y} f^{-1}(y)
$$

2. Compute $f^{\prime}(x)$.
3. Show that

$$
\frac{d}{d y} f^{-1}(y)=\frac{1}{f^{\prime}\left(f^{-1}(y)\right)}
$$

Derivative of the inverse function

Let $f(x)$ be a differentiable one-to-one function. Suppose that $f^{\prime}\left(f^{-1}(y)\right) \neq 0$, for all y. Then, $f^{-1}(y)$ is differentiable and

$$
\frac{d}{d y} f^{-1}(y)=\frac{1}{f^{\prime}\left(f^{-1}(y)\right)}
$$

Proof: This follows from the functional relationship (*) and the chain rule. We have, for every y,

$$
f\left(f^{-1}(y)\right)=y
$$

Now, differentiating with respect to y (remember, we are wanting the derivative of the function $f^{-1}(y)$ with respect to $\left.y\right)$ and using the chain rule, we find

$$
\begin{aligned}
& 1=\frac{d}{d y}\left(f\left(f^{-1}(y)\right)\right)=f^{\prime}\left(f^{-1}(y)\right) \cdot\left(f^{-1}\right)^{\prime}(y) \\
& \Longrightarrow \quad \frac{d}{d y}\left(f^{-1}(y)\right)=\left(f^{-1}\right)^{\prime}(y)=\frac{1}{f^{\prime}\left(f^{-1}(y)\right)}
\end{aligned}
$$

The natural logarithm

Recall the following facts about $\exp (x)$:

1. $\exp (x)$ is strictly increasing. Hence, $\exp (x)$ is one-to-one.
2. The domain of $\exp (x)$ is the collection of all real numbers.
3. The range of $\exp (x)$ is the collection of all $y>0$.

Hence, $\exp (x)$ has an inverse function $\exp ^{-1}(y)$.

Remark:

- the domain of $\exp ^{-1}(y)$ is the collection of all $y>0$
- the range of $\exp ^{-1}(y)$ is the collection of all real numbers

We will often write $\exp ^{-1}(x)$ instead of $\exp ^{-1}(y)$. Remember, it doesn't matter what symbol we use for our input variable as long as we are consistent.
Now, since $f(x)=\exp (x)$ is a differentiable function so is $\exp ^{-1}(y)$. Thus, using the formula for the derivative of the inverse function

$$
\frac{d}{d y} \exp ^{-1}(y)=\frac{1}{f^{\prime}\left(\exp ^{-1}(y)\right)}
$$

Recall that $f^{\prime}(x)=\exp (x)$. Therefore, $f^{\prime}\left(\exp ^{-1}(y)\right)=\exp \left(\exp ^{-1}(y)\right)=y$, using functional property (*). Hence,

$$
\begin{equation*}
\frac{d}{d y} \exp ^{-1}(y)=\frac{1}{y} \tag{**}
\end{equation*}
$$

A Fundamental Interlude

Let $f(x)$ be a function. An antiderivative of $f(x)$ is a differentiable function $F(x)$ satisfying

$$
\frac{d}{d x} F(x)=f(x)
$$

Proposition: If $F(x)$ and $G(x)$ are antiderivatives of $f(x)$ then

$$
F(x)=G(x)+c,
$$

for some constant c.
The most important Theorem you saw in Calculus I was an approach to determining the antiderivative of a continuous function.

Fundamental Theorem of Calculus

Let $f(x)$ be a continuous function defined on the closed interval $a \leq x \leq b$. Then, the function

$$
F(x)=\int_{a}^{x} f(u) d u
$$

is an antiderivative of $f(x)$.

The natural logarithm II

We can restate $(* *)$ as follows:

$$
\exp ^{-1}(x) \text { is an antiderivative of } g(x)=\frac{1}{x}
$$

We define the natural logarithm function to be the function

$$
\ln (x)=\int_{1}^{x} \frac{d t}{t} \quad x>0
$$

By the Fundamental Theorem of Calculus, $\ln (x)$ is an antiderivative of $g(x)=\frac{1}{x}$. Hence, the Proposition implies that there is a constant c so that

$$
\exp ^{-1}(x)=\ln (x)+c
$$

Since $\exp (0)=1$, we have $\exp ^{-1}(1)=0$. Hence,

$$
0=\exp ^{-1}(1)=\log (1)+c=\int_{1}^{1} \frac{d t}{t}+c=c
$$

Hence,
The natural logarithm function $\ln (x)$ defined above is the inverse function $\exp ^{-1}(x)$,

$$
\ln (x)=\exp ^{-1}(x)
$$

