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Convergence Tests for Series III

Today we consider comparison tests for series. These are tests for convergence of
a series of positive terms.

At the end of yesterday’s lecture we investigated the behaviour of the series

∞

∑
n=1

1

5n + 3

We determined the following:

• The sequence of partial sums (sm) associated to ∑
∞
n=1

1
5n+3 is increasing. There-

fore, to show convergence of (sm) it suffices, by the Monotonic Bounded Theo-
rem, to show that (sm) is bounded above. We do this by comparing ∑

∞
n=1

1
5n+3

with known behaviour of another series.

• The sequence of partial sums (tm) associated to the convergent geometric series

∑
∞
n=1

1
5n = 1

4 are increasing and satisfy tm ≤ 1
4 , for m = 1,2,3, . . ..

• Since, for each n = 1,2,3, . . .,

5n < 5n + 3 Ô⇒
1

5n + 3
<

1

5n

we have

sm =
m

∑
n=1

1

5n + 3
< tm =

m

∑
n=1

1

5n
≤

1

4
,

for every m = 1,2,3, . . ..

Hence, (sm) is .

• Therefore, by the Montonic Bounded Theorem the sequence (sm) is ;
hence, the series ∑

∞
n=1

1
5n+3 is .

What you have shown in the previous exercise is the idea underlying the proof of
the following result.

1



Direct Comparison Test (DCT)

Let ∑an and ∑ bn be series having positive terms.

1) Suppose that, for each n, an ≤ bn, and ∑ bn is convergent. Then, ∑an is
convergent.

2) Suppose that, for each n, an ≥ bn, and ∑ bn is divergent. Then, ∑an is
divergent.

Remark: To be able to use the Direct Comparison Test effectively, we need to
have a bank of series whose behaviour is known that we can use for comparison
purposes. At the moment, we know the behaviour of the following types of series:
geometric series, telescoping series, the Harmonic Series.

We record the following facts:

• in Homework you will show that the series ∑
∞
n=1

1
n2 is convergent;

• we’ve seen that the Harmonic Series ∑ 1
n is divergent.

p-series Test

Consider the series ∑
∞
n=1

1
np , where p is a real number. Then,

1. ∑
∞
n=1

1
np is convergent if p ≥ 2.

2. ∑
∞
n=1

1
np is divergent if p ≤ 1.

Proof:

1. If p ≥ 2 then, for each n = 1,2,3, . . .,

np ≥ n2 Ô⇒ 0 <
1

np
≤

1

n2

Hence, since ∑
∞
n=1

1
n2 is convergent, we can apply DCT to show that ∑

∞
n=1

1
np is

also convergent.

2. If p ≤ 1 then, for each n = 1,2,3, . . .,

np ≤ n Ô⇒
1

n
≤

1

np

Hence, since ∑
∞
n=1

1
n is divergent, we can apply DCT to show that ∑

∞
n=1

1
np is

also divergent.

Remark: Although we can’t show it yet, it is a fact (which you are allowed to
assume) that ∑

∞
n=1

1
np is convergent whenever p > 1.
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Example:

1. Consider the series ∑
∞
n=1

1
n3+n+1 . We are going to compare this series with the

convergent series ∑
∞
n=1

1
n3 .

For n = 1,2,3, . . ., we have

n3 < n3 + n + 1 Ô⇒
1

n3 + n + 1
<

1

n3

Since the series ∑
∞
n=1

1
n3 is convergent, by the p-series test, the series ∑

∞
n=1

1
n3+n+1

is convergent, by DCT.

2. Consider the series
∞

∑
n=1

1

2n − 1
= 1 +

1

3
+

1

5
+

1

7
+ . . .

We rewrite the summand 1
2n−1 =

1
2 (

1
n−1/2). Now, for each n = 1,2,3, . . .

n − 1/2 < n Ô⇒
1

n
<

1

n − 1/2

Since the series ∑
∞
n=1

1
n is divergent (p-series with p = 1), the series ∑

∞
n=1

1
n−1/2 is

divergent, by DCT. Hence, the series 1
2 ∑

∞
n=1

1
n−1/2 = ∑

∞
n=1

1
2n−1 is divergent.

Check your understanding

1. Use the Direct Comparison Test to determine whether the series ∑
∞
n=1

5
3n5+3n2+n

converges or diverges.

2. Explain why you can’t use the Direct Comparison Test to compare the be-
haviour of the series ∑

∞
n=1

1
2n−1 with the convergent geometric series ∑

∞
n=1

1
2n .

The series ∑
∞
n=1

1
2n−1 ‘looks like’ the convergent series ∑

∞
n=1

1
2n and it seems entirely

reasonable to expect that the convergence behaviour of these series should coincide.
As you’ve just seen, we can’t make use of the Direct Comparison Test to compare
these series. However, all is not lost:
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Observation: in a few lectures we will learn the technique of mathematical induc-
tion. This will allow us to show the following

1

2n − 1
≤

3

2n
, for n = 1,2,3, . . .

Check your understanding
Use the observation to show that the series ∑

∞
n=1

1
2n−1 is convergent.

The following test for convergence formalises this notion of comparing series with
unknown convergence behaviour with similar looking convergent series.

Limit Comparison Test (LCT)

Suppose that ∑an and ∑ bn are series with positive terms. If the sequence
(an
bn
) is convergent and

lim
n→∞

an
bn

= c > 0,

then either both series converge or both series diverge.

Example:

1. Consider the series ∑
∞
n=1

1√
n+2

. As n gets very large the terms of the series begin

to look like 1√
n

(i.e. for n very large,
√
n + 2 is approximately

√
n).

The series ∑
∞
n=1

1√
n

is a p-series with p = 1
2 , and therefore divergent. It seems

reasonable to expect that the series ∑
∞
n=1

1√
n+2

is also divergent. However, since

< , for n = 1,2,3, . . .

we can’t apply the to show that ∑
∞
n=1

1√
n+2

is divergent.

However, if we let bn =
1√
n+2

and an =
1√
n

then

an
bn

=

√
n + 2
√
n

=

√
n(1 + 2/n)
√
n

=
√

1 + 2/nÐ→
√

1 + 0 = 1, as n→∞

Hence, since limn→∞
an
bn

= 1 > 0 and the series ∑
∞
n=1

1√
n

is divergent (p-series with

p = 1
2), the series ∑

∞
n=1

1√
n+2

is also divergent, by the Limit Comparison Test.

2. Let an =
1
2n , bn =

1
2n−1 . Then,

an
bn

=
2n − 1

2n
= 1 −

1

2n
Ð→ 1 − 0 = 1, as n→∞.

Hence, since limn→∞
an
bn

= 1 > 0 and the series ∑
∞
n=1

1
2n is convergent (Geometric

Series Theorem), the series ∑
∞
n=1

1
2n−1 is also convergent, by the Limit Compar-

ison Test.
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Flex those mathematical muscles!
Use the Limit Comparison Test to determine whether the following series converge

or diverge.

1.
∞

∑
n=1

1
√
n2 + 1

2.
∞

∑
n=1

n − 1

n2
√
n

3.
∞

∑
n=1

9n

10n − 4

5



Appendix: In this Appendix we provide a proof of the Limit Comparison Test.
Let (an) and (bn) be sequences of positive terms. Suppose that (anbn ) is convergent

and limn→∞
an
bn

= c > 0. Hence, for ε = c
2 we can find N so that

n ≥ N Ô⇒ ∣
an
bn

− c∣ < c2

That is, for n ≥ N we have

c

2
= c −

c

2
<
an
bn

<
3c

2
= c +

c

2

Hence, since bn > 0, we can rewrite this inequality as

c

2
bn < an <

3c

2
bn

Hence,

• if ∑
∞
n=N bn is divergent so is ∑

∞
n=N an, using the left inequality and DCT. Hence,

∑
∞
n=1 an = ∑

N−1
n=1 an +∑

∞
n=N an is also divergent.

• if ∑
∞
n=N bn is convergent then so is ∑

∞
n=N an, using the right inequality and DCT.

Hence, ∑
∞
n=1 an∑

N−1
n=1 an +∑

∞
n=N an is also convergent.
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